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Executive Summary 

Due to transportation technologies having such heterogeneous impacts on different communities, 
there needs to be better tools to evaluate the deployment of emerging technologies with limited data. 
Microtransit is one such technology. We propose a novel methodology to “upscale” the limited data 
available so that further decision-support analysis and modeling can be achieved by microtransit 
companies working with cities around the U.S. where none existed previously. The methodology 
involves simulating data using a calibrated day-to-day adjustment process for a set of cities in which 
data are available.  

The day-to-day adjustment process simulates both first/last mile access trips and direct trips with 
the adjustments made to match occupancy data. A within-day microtransit simulator developed for the 
Federal Transit Administration is enhanced to be more parametric in design to be calibrated to different 
cities. A scenario generation process is developed to come up with the scenarios from which the data 
are generated. 

The method is tested in a case study in collaboration with Via Transportation based on data they 
shared for Salt Lake City, Austin, Cupertino, Sacramento, and Columbus, as well as publicly available 
data from Jersey City. For those cities, public data is collected to estimate mode choice models that 
include Auto, Bike, Transit, Microtransit, and Walk for each city. Public data include U.S. Census 
Transportation Planning Products, American Community Survey, Transitfeeds, Smart Location Database 
from EPA, OpenStreetMap, and OpenTripPlanner. The models are estimated initially using maximum 
likelihood without the Microtransit mode since the data do not include it; afterwards, the Microtransit 
alternative specific constant is updated to minimize least squares from ridership data shared by Via. The 
average microtransit ridership error over the 6 cities with the estimated constant is 0.004 while the 
error with a constant of 0 is 603.59, showing that the method fits quite well. 

The within-day simulation parameters are also adjusted in terms of walking limit (0.5 – 0.1 miles), 
dwell time (15 – 5 sec), and the weight placed on operator cost over user cost (0.8 – 0.2). This is done for 
the 6 cities resulting in an average ridership error of the output simulations to be 18.4%, which is 
acceptable. Different cities end up with different calibrated parameters. For example, Salt Lake City 
commuters have a walking limit of 0.5 mile, dwell time of 15 sec, and operator weight of 0.5 while 
Sacramento has walk limit of 0.1 mile, dwell time 5 sec, and operator weight 0.2. 

The simulator is then used to synthesize 326 scenarios. The scenarios are randomly generated from 
four of the cities: Salt Lake City has 71 scenarios, Austin has 79, Sacramento has 100, and Cupertino has 
76. For these scenarios, a forecast model is estimated. We use a linear regression with employment 
density, household density, mean household income, street density, transit station density, ratio of 
households with one or more automobiles, a trip equilibrium index, the underlying pricing policy from 
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Via (which could be PP1 (fixed fare and paid first/last mile rides) or PP2 (fixed fare with free first/last 
mile rides)). First order features are also used and selected via Lasso regularization. The resulting 
ridership model has a R2 of 0.72 from the data based on 47 features. The CV of the model applied to the 
4 original cities’ data is 45%. Meanwhile, the VMT model has R2 of 0.90 based on 55 features, and a 
Coefficient of Variation (CV) of 37%. Considering the comparison is to only four cities’ output data as a 
proof of concept, these results look like an adequate fit. Further refinements in the future can be made 
by identifying city clusters from which different models can be estimated.  

The forecast models are then used to identify two other alternative portfolios that have the same 
predicted total VMT as the 4 cities currently being operated, but their ridership can be expanded 1.4 to 
1.9 times higher. For example, the first example portfolio consists of service regions in Seattle, Chicago, 
Boston, and Birmingham. The second portfolio includes Seattle, Boston, Detroit, St. Louis, D.C., and 
Arlington. The case study proves that the day-to-day adjustment model can be made to fit to limited 
data, and further that it can help reveal important relationships between public data and measures like 
ridership and vehicle-miles-traveled. Such results can be used by microtransit companies to identify 
cities to reach out to and to provide quantitative support to convince them of the potential value of the 
service; it can also be used by federal agencies like the Federal Transit Administration to target priority 
areas for supporting microtransit deployment.  

Improvements can be made to the scenario generation process by identifying city typologies and 
customizing models for those types. We find that certain cities like Columbus just behave very 
differently from the other cities. Understanding a city's transportation typology is immensely valuable 
for planners and policy makers whose decisions can potentially impact millions of city residents. Despite 
the value of understanding a city's typology, labeled data (city and its typology) is scarce, and spans at 
most a few hundred cities in the current transportation literature. We propose a supervised machine 
learning approach to predict a city's typology given the information in its Wikipedia page. Our method 
leverages recent breakthroughs in natural language processing, namely sentence-BERT, and shows how 
text-based information from public sites like Wikipedia can be effectively used as a data source for city 
typology prediction tasks that can be applied to over 2000 cities worldwide. The method makes 
supervised learning of city typology labels (such as congestion, auto-heavy, transit-heavy, and bike-
friendly cities) tractable even with a few hundred labeled samples. Based on data from 197 cities for 
training and 85 cities as a test set, we show that model for predicting whether a city is congestion-
based, auto-heavy, transit-heavy, or bike-friendly just from Wikipedia data alone has accuracies of 080, 
0.85, 0.62, and 0.76, respectively. The model is then used to classify 2100 cities around the world, which 
significantly expands the visibility to what can be evaluated. 
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1. Introduction 

1.1 Project Background 

Transportation technologies are not “one-size-fits-all” solutions in general because their effectiveness 
depend on the deployment region. On-demand transit, i.e., “microtransit”, exhibits this characteristic. 
Microtransit can be defined as shared public or private sector transportation services that offer fixed or 
dynamically allocated routes and schedules in a demand-responsive manner i.e., in response to individual or 
aggregate consumer demand, using smaller vehicles (multi-passenger /pooled shuttles or vans) and 
capitalizing on widespread mobile GPS and internet connectivity (Volinski, 2019; Chow, et al., 2020; Yoon, et 
al., 2021). The broader market of demand-responsive transportation (e.g., shared taxis, ridesourcing, 
carshare, micromobility, microtransit) has gained significant interest in the global urban mobility sector 
because of these mobile technologies.  

Since these technologies are not one-size-fits-all, the reception for such technologies have been mixed. 
Some ventures have been successful. For example, Via Transportation, Inc. (founded in 2012) (Via, 2021) 
continues to operate at full capacity in over 35 countries in partnership with over 90 transit agencies (see 
Figure 1.1(a)). Their services include door-to-door, first-last mile trips to transit stations, and virtual stops. 
Transdev (2021), founded in 2011, operates multiple microtransit services (including first-last mile services) 
in the U.S, the Netherlands, France, and Australia. On the other hand, there have been failures as well: 
Kutsuplus in Helsinki (Haglund, et al., 2019), Car2Go in North America (Krok, 2016), Bridj (Bliss, 2017), and 
Chariot (Marshall, 2019). Usability and adoption of such services vary from city to city in terms of cost and 
benefit. Currie and Fournier (2020) provide a lifespan analysis on 120 demand-responsive transportation 
systems (including microtransit) from 19 countries over the period 1970-2019; their analysis highlights the 
failure rates in the UK is 67% while that in Europe and the USA/Canada is 23% and 50%, respectively. 

 

(a)                                                                (b) 
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The list of cities shown in Figure 1.1(a) represent an example of a “microtransit deployment portfolio”. 
A portfolio consists of a list of active product projects sharing common resources that is continuously 
updated; new projects need to be evaluated and prioritized and existing projects may be accelerated, 
abandoned, or de-prioritized (Cooper, et al., 1998; Chow, et al., 2011). With microtransit deployment as the 
portfolio product, how can mobility providers decide which city agencies to work with for deploying new 
service?  

To address this microtransit deployment portfolio problem, a solution is needed that can make the 
most of the limited data that may be available. We propose a new methodology to “upscale” the available 
data using simulation, in a similar manner to how deep learning algorithms can be used to upscale low-
quality images into high-quality ones.  

This topic of scenario generation has also been applied to generating test cases for machine learning 
models, particularly in testing autonomous vehicle algorithms (Rocklage, et al., 2017; Tuncali, et al., 2018; 
Nalic, et al., 2020). Our methodology is novel in that the market equilibrium model is extended from earlier 
work (Chow, et al., 2020; Djavadian & Chow, 2017a; Djavadian & Chow, 2017b; Caros & Chow, 2021) to 
allow parameterizing degree of virtual stop access distance and outputting the degree of usage of 
microtransit as a first/last mile access mode. Analysis of the generated scenario data reveals interesting 
insights relating a deployment’s ridership and vehicle-miles-traveled (VMT) to service region design, pricing 
policy, and proximity of fixed route transit stations. Furthermore, the method can be readily adapted to any 
emerging transportation technology deployment planning process. 

1.2 Role of Multimodal Connectivity in Improving the Performance of Ridesharing 

Three factors are addressed in this research: the role of multi-modal connectivity in improving the 
performance of ride sharing, human behaviors affecting modal connections, and market opportunities to 
expand ride sharing services. Microtransit services such as Via can provide can be reinforced by connecting 
to other modes and reducing competition among modes of travel. To reinforce positive performance, a 
multimodal framework is portrayed here that interfaces with Via usage applicable to some of the target 
cities (see Figure 1.2). This work covers major modes of travel, i.e., automobiles and other road-based 
vehicles and rail, as well as microtransit which is becoming a significant component of multimode travel, and 
within those broad categories are numerous subcategories with varying characteristics (Litman 2021a). 
Microtransit is defined as “lightweight, single-person vehicles” (U.S. DOT, BTS 2020: 3-12). The benefits of 
microtransit are lower environmental impacts, smaller space requirements, greater ease of operability in 
dense areas (INRIX 2019), simplicity of operation, and portability.  

Human behaviors are identified including choice of modes of travel and routes. Behavior is a key factor 
in understanding multi-modal connections. Behavior covers a wide range of factors such as cost, 
environmental sensitivity, safety and security, and convenience. 
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Market opportunities are briefly identified that extend beyond passenger transport to encompass food 
delivery services as a future market (Zimmerman 2021b). This has been a need during the COVID-19 
pandemic. 

 

 

Figure 1.2. Multi-modal transportation framework: existing and potential van service examples, trip type 
and interconnectivity with other modes, urban areas (adapted from Chow, et al., 2021, Zimmerman, 

2019b)  

The project report is organized to provide an overview of the forecast models for microtransit, and 
simulation-based market equilibrium forecasting which includes an in-depth discussion of multimodal 
connectivity requirements. It is followed by a discussion on the proposed methodology including day-to-day 
market equilibrium model to handle both first/last mile access trips and direct trips, an updated within-day 
microtransit simulator with more parametric in design, and a scenario generator to get surrogate data for 
developing the service portfolio design model. This is followed by an in-depth case study using data shared 
by Via (for Salt Lake City, Austin, Cupertino, Sacramento, Columbus, and Jersey City) to illustrate how the 
portfolio design model can be used analyze deployment portfolios in multiple cities. Finally, a section is 
devoted for understanding and predicting city typologies where we propose a novel method using Wikipedia 
data for large-scale city classification. 
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• Section 2: overview of microtransit forecasting and multimodal connectivity 
• Section 3: proposed methodology   
• Section 4: use case study of Via microtransit deployment portfolio 
• Section 5: city typology prediction using Wikipedia 
• Section 6: conclusion 
• Section 7: summary of research outputs and technology transfer 
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2. Overview of Multimodal Connectivity and Microtransit Forecasting 

2.1. Multimodal Connectivity Incorporating Ride Sharing 

Commuting patterns in the absence of ride sharing often emphasize or incorporate multi-modal 
connectivity. Such connectivity patterns will often vary by type of trip and mode (U.S. DOT, FHWA, 2018: 18; 
U.S. EPA, 2013: 29). The existence of multi-modal facilities that include such connectivity are key to 
promoting multi-modality and integrating ride sharing modes. Figure 1.2 highlights some of these 
relationships as both existing and potential with a focus on ride sharing modes. Figure 1.2 lists a half dozen 
types of trips. Existing ride sharing services are strongest for work, food, and shopping trips. In the future, 
ride sharing could connect with non-motorized forms of microtransit as well as conventional transit and 
expand into servicing more types of trips. 

The potential for interconnectivity of transportation modes is reflected in the increasing number of 
modes, the increasing connections among them, and the existence of modal connectivity infrastructure to 
support connectivity.  The variability of connectivity of multi-modal transportation reflects the many 
dimensions of multiple modes including different services, technologies often broadly categorized as 
motorized and non-motorized, facilities, pricing, networks, and supporting communication structures 
(Litman, 2021b). New modes are continuing to emerge, and the trend has been quantified nationally by 
NACTO (2019b: 5) for just a few of these - shared bikes, e-bikes and e-scooters: “84 million trips on shared 
bikes and e-scooters in the United States, more than double the number of trips taken in 2017 . . . with 38.5 
million trips on shared e-scooters.” 

In light of these trends NACTO has underscored the need to regulate their use to avoid conflicts 
(NACTO, 2019b). 

The U.S. DOT BTS analysis of its Intermodal Passenger Connectivity Database (IPCD) nationally reported 
that as of 2019 bikeshare dominated interconnected transportation systems, followed by rail – heavy, 
commuter and light rail in that order (U.S. DOT BTS 2020, p. I-23). The prevalence of rail and bus connectivity 
has been strong especially in major urban areas such as the New York area (Zimmerman et al., 2014). 
Zimmerman et al. (2014) found that in NYC and its region, subway and bus transfers are among the most 
common. However, they depend on such connections existing. The research found that in NYC bus stops 
near subway stations are often sparser in poorer areas of the city. That bikeshare and scooters are engaged 
in multimodal connectivity to transit is indicated in a NACTO survey that found that about a quarter of 
scooters and two thirds of station-based bike share users connect to transit. 

People are often flexible in their use of multiple modes and such usage is often situation dependent, 
changing over time. Immediately following the New York City World Trade Center attacks on September 11, 
2001, for example, Zimmerman and Sherman (2011) found that survivors leaving the area began by using 
single travel modes, primarily walking, until other modes opened up and they quickly switched to multiple 
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modes to leave the area. The configuration or location of transfers and type of mode used often are related 
to whether they are for the first or last mile of travel. Micromobility modes are more commonly used for 
small distances, whereas road and rail-based modes are typically used for longer distances (INRIX, 2019: 
Figure 2). 

The viability of incorporating new technologies into multi-modal connectivity including ride sharing for 
electric vehicles involve technological factors such as battery technology and the existence of charging 
technology (Yergin, 2021). Autonomous vehicles have been explored for multimodal mobility (Kortum, 2018) 
and will require public acceptability, street reconfigurations (Reid, 2021), and other adaptations. Multimodal 
connectivity also faces equity issues as some research has shown in that not all modes and their connections 
to other modes are distributed equally across demographic groups. Zimmerman et al. (2014) identified this 
for bus-subway connections across over 400 subway stations in New York City. The study by Ferenchak and 
Marshall (2021) of 29 cities over a ten-year period from 2010-2019 in the U.S. found inequities in the siting 
of bike share facilities. Multi-modal connectivity will also be affected by regulations that are put in place for 
some of the newer technologies (NACTO, 2019b: 14). 

2.2. Human Behavior 

Human behavior can influence connections among multiple modes (Zimmerman, 2019a; Litman, 2021). 
For example, these behaviors are often a function of time, convenience, cost and cost stability of travel, 
which are characteristics of car sharing explored in other sections of the report for VIA. The importance of or 
sensitivity to these factors to users can vary, producing variations in demand. Factors that shape human 
behavior applicable to infrastructure in general, including transportation, have been identified by 
Zimmerman (2019a) as: Safety and security, Environmental compatibility, Cost directly and indirectly as 
economic benefits, Affordability, Availability, Accessibility, Comfort, Convenience, Aesthetics, and Equity. 
Examples of behavioral factors that relate directly to transportation, including ride sharing, are summarized 
as follows from Zimmerman (2019a) and applicable to ride sharing. Safety and security reflect perceptions 
about the risk and severity of accidents for different travel modes. Environmental compatibility refers to the 
extent to which different modes exert pressures on the environment through emissions and disruptive use, 
and the values that transportation users place on those environmental attributes. Non-motorized modes are 
generally considered more environmentally compatible except where they physically exert pressures on the 
environment. Other technologies are considered to support environmental values as well, such as electric 
vehicles. While the technological aspects were discussed in the previous section, there are behavioral 
elements as well related to the extent to which people are likely to adopt electric vehicles (EVs) over fuel-
based cars (Yergin, 2021). Economic benefits appear in the form of property values (Chatman and Noland 
2013). Costs also encompass savings resulting from when a vehicle can be charged, e.g., time of use (Boylan, 
2019). Convenience includes choice of routes, for example the research for transit by Guo (2011). 
Accessibility is associated with many metrics and refers to how easily one can obtain services. Proximity is 
one such measure that Via incorporates in terms of how far users are from the vehicle they need. Transit-on-
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demand services that Via has offered in low density areas include services in Arlington, TX (Smith, 2021) and 
many other cities that offer proximity of pick up and drop off. 

2.3. Expanded Markets for Ridesharing 

An important potential area for the expansion of intermodal frameworks is food delivery services as a 
future market for such multimodal services. Ride sharing services combined with other modes can 
potentially provide passenger and product delivery alternatives to reduce cost and travel time across the 
food delivery supply chain (Zimmerman, 2021a, b). Many parts of the food chain depend on a combination 
of transportation technology and behaviors. The factors that influence the distribution portion of the food 
chain have been addressed and analyzed extensively and are presented and summarized by Zimmerman et 
al. (2016, 2018). During the pandemic, dramatic changes in transport within the food distribution system 
occurred that often affected food processing and packaging. For example, manufacturers often 
circumvented wholesalers, sending food produce directly to consumers which had considerable implications 
for transportation modes and their connectivity (Zimmerman, 2021b). 

2.4. Forecast Models for Microtransit 

In microtransit deployment portfolio management, the perspective shifts to a market of multiple cities. 
Forecasts need to be made for multiple different cities and for different operating modes. Conventional 
forecasting practices (Volinski, 2019; Chow, et al., 2020; Yoon, et al., 2021) only consider the public agency 
perspective, which are not applicable to the deployment portfolio planning problem. Cross-sectional models 
for forecasting microtransit measures across multiple cities simply do not exist.  

Forecast models for individual cities are also limited, and for good reason. Analytical models tend to 
resort to simplified operations and homogeneous conditions (Daganzo & Ouyang, 2019) or are used for 
explaining ex post conditions (Haglund, et al., 2019; Pinto, et al., 2020; Pantelidis, et al., 2020; Ma, et al., 
2021). Microtransit can have many dimensions of complexity: routing, dispatch, pricing, rebalancing, fleet 
sizing, service region coverage, etc. Four step models are not equipped to make predictions for users based 
on these complex factors mainly because that equilibrium cannot be easily captured in a static model that 
exhibits not only route and mode choice, but also transfers, wait time, and departure time choice. To 
overcome this drawback, city simulations draw on complex multi-agent simulations of activity behavior 
(Chow & Djavadian, 2015; Cich, et al., 2017). However, these tools are computationally expensive and data 
hungry.  

One area that has limited exploration is in forecasting the role of microtransit as a first/last mile access 
mode (Shaheen & Chan, 2016). To date there are no forecast models that distinguish between microtransit 
as a direct service or as a first/last mile access mode. Yan, et al. (2019) makes forecasts of multimodal trips 
using ride-sourcing strictly to access public transit.  
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2.5. Simulation-based Market Equilibrium Forecasting 

Simulation-based methods are proven to be effective for evaluating complex mobility systems (Horn, 
2002; Jung & Chow, 2019; Ma, et al., 2019; Markov, et al., 2021). However, many such studies only consider 
fixed demand to simulate the supply side “within-day” without any equilibration.  

To capture the equilibrium between demand and mobility services, day-to-day adjustment mechanisms 
have been used to describe a transportation system through its dynamic evolution (Smith, 1984; Watling & 
Hazelton, 2003). Under such mechanisms, users and operators in the system adjust their behavior according 
to past experiences. Such mechanisms can lead the system to evolve and converge at different states 
depending on the initial conditions and the behavior characteristics of the users and operators (Smith, et al., 
2014). Day-to-day adjustment models have been used to model complex transportation systems because 
they explicitly capture the relationship between system state and the behavior of users and operators 
(Horowitz, 1984; Mahmassani & Chang, 1986; Mahmassani, 1990; Cantarella & Cascetta, 1995). However, 
these earlier studies focus only on the road traffic network. 

Djavadian and Chow (2017a,b) proposed an agent-based day-to-day adjustment process of flexible 
transport service and showed that the sampling distribution of different agent populations reaches a 
stochastic user equilibrium (SUE). Users’ choices of mode and departure time are adjusted from day to day 
to maximize utility and minimize delay. Caros and Chow (2021) extended that model to capture operator 
learning of optimal cost weights to anticipate elastic user demand in evaluating modular autonomous 
vehicles in Dubai.  

Similar mechanisms are adopted in this study to model the market equilibrium of a transportation 
system with a microtransit subsystem. 
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3. Proposed Methodology 

The scope of the methodology is shown in Figure 3.1. The ideal setting is that there is enough data that 
insights (e.g., forecast model as shown in the top dashed box) can be drawn between public data available 
for any U.S. city and measures important to the portfolio, e.g., aggregate daily ridership or the fleet’s VMT. 
The problem is that data needed for such an analysis or portfolio forecast model is “low-quality”; e.g., in our 
study we have only data from 6 U.S. cities (of which only 4 are usable).  

Our proposed methodology can be used to obtain information including degree of first/last mile access, 
fleet size, fleet vehicle miles traveled, average traveler journey times (wait, access, in-vehicle), operation 
cost, revenue, and other derivative measures. To the best of our knowledge, no other forecast methodology 
outputs all these measures.  

 

Figure 3.1. Process diagram showing modeling needed to generate scenario data for a portfolio-level 
forecast model  
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3.1. General Model Design 

 A day-to-day adjustment process characterizes the dynamics in adjustments made by both travelers 
(users) and the operators each day as a dynamic system. Djavadian and Chow (2017a,b) showed that such 
adjustment processes can reach a stochastic user equilibrium with an asymptotic number of sampled agent 
populations. The framework is shown in Figure 3.2.  

At the end of the period, experienced micro-transit in-vehicle time, wait time, and walk time for each 
user, and average occupancy for the vehicles, are computed. These values are used to update the mode 
choices, departure times, and fleet sizes for the next day (note that only microtransit is simulated, so the 
attributes for all the other modes—Auto, Transit, Bike, Walk, Others—are fixed). The utility functions are 
generally specified as shown in Eq. (3.1) – (3.6) (with most statistically insignificant attributes for each city 
removed) as a mode choice model for a given agent 𝑛𝑛. 

 

Figure 3.2. Framework of the day-to-day adjustment with oval functions, rectangles for data, and a 
diamond for decision 

𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛    = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 

× 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑛𝑛 + 𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛   (3.1) 

 

𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑛𝑛 + 𝛽𝛽𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑛𝑛 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 

𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑛𝑛 +  𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑛𝑛 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑛𝑛 + 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑛𝑛   (3.2) 
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𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑛𝑛    =  𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖  +  𝛽𝛽𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑛𝑛 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑛𝑛 + 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑛𝑛   (3.3) 

 

𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑛𝑛   = 𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   + 𝛽𝛽𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑛𝑛 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑛𝑛 + 𝜀𝜀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑛𝑛  
 (3.4) 

 

𝑈𝑈𝑀𝑀𝑀𝑀,𝑛𝑛      = 𝑎𝑎𝑎𝑎𝑐𝑐𝑀𝑀𝑀𝑀 + 𝛽𝛽𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 

× 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀,𝑛𝑛 +  𝛽𝛽𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴𝑇𝑇𝑀𝑀𝑀𝑀,𝑛𝑛 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 

𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀,𝑛𝑛 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀,𝑛𝑛 + 𝜀𝜀𝑀𝑀𝑀𝑀,𝑛𝑛   (3.5) 

 

𝑈𝑈𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛 = 𝜀𝜀𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛   (3.6) 

 

where 𝑎𝑎𝑎𝑎𝑐𝑐〈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉 denote the mode specific constant for 〈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉 =
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑀𝑀𝑀𝑀), 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒};  𝑇𝑇𝑇𝑇〈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉 is modal travel times from origin to 
destination; 𝐶𝐶𝐶𝐶〈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉 denote the corresponding modal travel costs; 𝑊𝑊𝑊𝑊〈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉 refer to wait times for transit 

and microtransit modes; 𝐴𝐴𝐴𝐴𝑇𝑇〈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉 are the access/ egress time for transit and microtransit; and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑛𝑛 
is a categorical variable for interzonal trips i.e., 1 when a trip’s origin and destination are in different zones 
(census tracts) and 0 otherwise. The attributes are tracked with an index 𝑑𝑑 to represent the perceived value 
at the start of day 𝑑𝑑. The parameters 𝛽𝛽𝑡𝑡𝑡𝑡〈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚〉

 
,𝛽𝛽𝐴𝐴𝐴𝐴 ,𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ,𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ,𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 need to be estimated for 

each city or cluster of cities.  

 One novel treatment of the demand model is that it includes agents from both (1) direct door-to-
door trips within a designated service region 𝑆𝑆 as well as (2) first/last mile trips connecting with transit 
stations located within the service region to other locations in the greater region 𝑍𝑍 ⊃ 𝑆𝑆. This is illustrated 
with Figure 3.3. 

Census tracts are used as the geographic units. At the start of the simulation, the origin and destination 
coordinates of each user are generated randomly within their origin and destination census tracts. The 
adjustment of fleet size is based on average occupancy provided by the data. At the end of each day, fleet 
size is adjusted towards the ideal average occupancy based on the occupancy of the past day as shown in Eq. 
3.7.   
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Figure 3.3. Illustration of a designated service region in red (via direct trips) along with blue-highlighted 
zones in the greater region accessed by public transit (via first/last mile trips) 

where 𝐹𝐹𝐹𝐹𝑑𝑑 stands for the microtransit fleet size on simulation day 𝑑𝑑. 

Microtransit in vehicle time, wait time and walk time for each user is also updated from day to day. The 
method adopted is similar to Djavadian and Chow (2017a,b). For a user who used microtransit on day 𝑑𝑑 for 
commute, he/she learns from the experience on day 𝑑𝑑 and update his/her perceived in-vehicle time, wait 
time, and walk time with a learning rate 𝜃𝜃 (shown in Eqs. (3.8) – (3.10)). Learning rate is set as 0.1 in this 
study. 

𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑+1 = (1 − 𝜃𝜃)𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀,𝑛𝑛

𝑑𝑑 + 𝜃𝜃 𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑    (3.8) 

𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑+1 = (1 − 𝜃𝜃)𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀,𝑛𝑛

𝑑𝑑 + 𝜃𝜃 EW𝑇𝑇𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑    (3.9) 

𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑+1 = (1 − 𝜃𝜃)𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝑛𝑛

𝑑𝑑 + 𝜃𝜃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑    (3.10) 

where 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑 , 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀,𝑛𝑛

𝑑𝑑 , and 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑  stand for perceived microtransit (𝑀𝑀𝑀𝑀) in-vehicle time, wait time, and 

walk time for user 𝑛𝑛 at the beginning of day 𝑑𝑑. 𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑 , 𝐸𝐸𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀,𝑛𝑛

𝑑𝑑 , and 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑  stand for experienced 

microtransit (𝑀𝑀𝑀𝑀) in-vehicle time, wait time, and walk time for user 𝑛𝑛 on day 𝑑𝑑.  

Having introduced the key attributes, let us adopt a generic symbol 𝑋𝑋 to represent each attribute for 
convenience. For a user 𝑛𝑛′ who did not use microtransit but used other modes on day 𝑑𝑑 for commute, 
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his/her perceived times are updated with the population’s average perceived times 𝑋𝑋�𝑀𝑀𝑀𝑀𝑑𝑑  at the end of day 𝑑𝑑 
(shown in Eq. (3.11)). 

𝑋𝑋𝑀𝑀𝑀𝑀,𝑛𝑛′
𝑑𝑑+1 = (1 − 𝜃𝜃)𝑋𝑋𝑀𝑀𝑀𝑀,𝑛𝑛′

𝑑𝑑 + 𝜃𝜃  𝑋𝑋�𝑀𝑀𝑀𝑀𝑑𝑑    (3.11) 

Population perceived in-vehicle time, wait time, and walk time represent the overall perception of the 
population in the service region, which is the successive average of average in-vehicle, wait, and walk time of 
the past 𝑛𝑛 days (shown in Eq. (3.12)).  

𝑋𝑋�𝑀𝑀𝑀𝑀𝑑𝑑 = �1 − 1
𝑑𝑑
�𝑋𝑋�𝑀𝑀𝑀𝑀𝑥𝑥−1 + 1

𝑑𝑑
𝐸𝐸𝑋𝑋�𝑀𝑀𝑀𝑀𝑑𝑑     (3.12) 

Departure time of each user is a continuous variable that is updated based on his/her expected arrival time. 
The departure time of a passenger on day (𝑑𝑑 + 1) is computed based on the experienced commute time of 
day 𝑑𝑑 as shown in Eq. (3.13). 

𝐷𝐷𝐷𝐷𝑛𝑛𝑑𝑑+1 =  𝐴𝐴𝐴𝐴𝑛𝑛 − 𝑃𝑃𝑃𝑃𝑛𝑛𝑑𝑑    (3.13) 

where 𝐷𝐷𝐷𝐷𝑛𝑛𝑑𝑑 stands for the departure time of user 𝑛𝑛 on simulation day 𝑑𝑑, 𝐴𝐴𝐴𝐴𝑛𝑛 stands for the desired arrival 
time of user 𝑛𝑛. 𝑃𝑃𝑃𝑃𝑛𝑛𝑑𝑑 is the perceived commute time at the end of day 𝑑𝑑 for user 𝑛𝑛, which depends on the 
mode taken in Eq. (3.14).  

𝑃𝑃𝑃𝑃𝑛𝑛𝑑𝑑 =  𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑 +𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀,𝑛𝑛

𝑑𝑑 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝑛𝑛
𝑑𝑑     (3.14) 

At the end of each day, we check if the system has reached a steady state. The adjustment stops when 
the daily microtransit ridership change keeps below 1% (shown in Eq. (3.15)) for 5 consecutive days. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑑𝑑+1−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑑𝑑

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑑𝑑 ≤ 1%   (3.15) 
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3.2. Estimation of Mode Choice Model 

The choice model is estimated using a combination of microtransit operator data and publicly available 
data. The following estimation algorithm is used. 

Algorithm 3.1. Mode choice estimation 

1. Obtain the commute flow data for auto, transit, bike, walk, and others between census tracts within 
the region (CTPP, 2016) including transit flows from within service region to outside the service 
region (within the boundaries of the county/counties covered by the region) and vice-versa. 

2. Assume some of the parameters’ relationships: βMTwait = βwait (in transit if significant, else 
βMTwait = 1.53βttauto), 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 1.59𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 
, 𝛽𝛽𝐴𝐴𝐴𝐴 = 1.78𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 
, 𝛽𝛽𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 = 3𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 
 (Wardman, 

2004). 
3. Two population segments are constructed: commute flows within the service region 𝑆𝑆 as direct trips 

with access to all 6 modes in Eqs. (3.1) – (3.6); transit flows from 𝑆𝑆 to 𝑍𝑍 ⊃ 𝑆𝑆 and vice versa are 
assigned OD flows to/from the nearest transit station, assumed to have access to walk, bike, or 
microtransit only. 

4. Estimate Eqs. (3.1) – (3.4), (3.6) (without microtransit) using conventional maximum likelihood 
estimation with the added constraints in step 2. 

5. Add in the microtransit utility function Eq. (3.5) and use root finding via bisection method to ensure 
the ridership difference (between predicted and actual) is minimized by adjusting 𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀, keeping in 
mind that the ridership is obtained from the sum of both population segments.  

 

3.3. Within-day Simulator 

Within-day simulation of the microtransit system is the module located at the lowest level in the entire 
framework. Due to the limitation of the observation in the actual mobility market, this study uses simulation 
to estimate users’ responses and system performance. The main framework of this simulation (as illustrated 
in Figure 3.4) is newly extended from Yoon, et al. (2021) to include:  

• Virtual stops, meeting points other than actual origin and/or destination of users, and 
• Feature of depot assignment, designating a depot of vehicles based on relocation cost and average wait 

time.  
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There are four categories of required inputs of this simulation as described below. Simulation 
parameters control the length and precision of simulations, regulating how long and often to collect 
generated data. Example simulations conducted for four different cities (Salt Lake City, Austin, Cupertino, 
and Sacramento) are shown in Figure 3.5. 

• Simulation parameters: simulation length, time step length 
• Scenario parameter: walking speed, maximum walking distance, average vehicle running speed, weight 

for passenger in-vehicle/wait/access time, value of time,  
unit operation cost, weight of operator cost 

• System design parameter: vehicle capacity, fleet size, number of depots, average dwell time 
• Dataset: passenger request information, passenger arrival data, depot locations, virtual stop locations, 

vehicle allocation distribution among depots 
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3.4. Scenario Generator 

Once the simulation-based market equilibrium model is calibrated, a process is used to generate 
additional scenarios to upscale the existing data. In each scenario 𝜔𝜔, one of the calibrated cities is selected 
and the service region 𝑆𝑆 is redefined as 𝑆𝑆(𝜔𝜔). We define a region as constituting two or more contiguous 
zones where microtransit service operates both door-to-door and first-last mile service with a specific 
pricing policy. The scenario is generated using Algorithm 3.2.  

 

 

 

 

 



 

  Urban Microtransit Cross-Sectional Study for Service Portfolio Design  
26 

Algorithm 3.2. Scenario generation 

Given a city where a microtransit service operates (in a specific region), we generate multiple scenarios 
(regions) with the following steps: 

1. Obtain the list of census tracts (zones) and their boundaries for all zones within the county/counties 
intersecting with the existing service region 𝑆𝑆.  

2. For each census tract (as obtained in step 1), store their neighboring census tracts (i.e., zones sharing 
common boundaries).  

3. Select a zone (let’s say x) and generate 3 scenarios: L1, L2, L3, where, L1 constitute the direct 
neighbors of zone x, then we add the neighbors of each zone in L1 to get L2, and for L3 we add 
neighbors of all zones in L2 to the existing L2 scenario. Figure 3.6 provides an illustration of service 
region scenario generation. Randomly select one (from L2 and L3) as a service region 𝑆𝑆(𝜔𝜔). 

4. Assume a pricing policy as shown below: 
o PP1 = fixed fare for door-to-door services and first last mile rides 
o PP2 = fixed fare for door-to-door services and free first last mile rides 
o PP3 = variable fare 

Apply the most common pricing policies PP1 and PP2 to each of the sample scenarios from step 3.  

 

To provide a better idea on how the population data and simulated microtransit performance data 
for different scenarios look like, Figure 3.7 shows examples of four service regions generated in different U.S. 
counties using Algorithm 3.2. Each scenario is comprised of a set of census tracts based on which we obtain 
the aggregate population data (as listed in the figure) for the scenario. Microtransit performance data (e.g., 
ridership, vehicle miles traveled, fleet size, and others) is obtained using the calibrated simulation model for 
the associated pricing policy considered in the scenario. To ensure that we cover a diverse set of scenarios 
with a reasonable range of the population characteristics and ridership for the forecast models, 𝑆𝑆(𝜔𝜔) in step 
5 of Algorithm 3.2 is randomly selected from different clusters of scenarios. In particular, for multiple 
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scenarios generated for a city (let’s say all L2 scenarios), we divide them into 6-8 clusters based on their 
population characteristics (using k-means clustering algorithm (MacQueen, 1967)). Then from each of these 
clusters, we randomly select sample scenarios and apply pricing policies (PP1 and PP2) to obtain simulated 
microtransit performance data for the selected scenarios. This way we obtain upscaled data that is used for 
developing forecast models for service portfolio design and deployment planning as demonstrated in the 
case study in Section 4.   

 

 

Figure 3.7. Examples of generated scenarios in different U.S. counties with population data and simulation 
data obtained for the scenarios 

 

4. Portfolio Model for U.S. Microtransit Deployment 

The proposed methodology is evaluated as follows. Since the contribution focuses on simulating new 
data to supplement limited existing data for the purpose of evaluating deployments in different cities, our 
objective is to show that: 

1) A forecast model can be specified (having statistically meaningful relationships between public data and 
ridership/VMT) using the upscaled data that  
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2) Adequately fits the limited data that we have. 

A case study is conducted in collaboration with Via, who provided aggregate ridership data for six different 
U.S. cities: Salt Lake City, Austin, Cupertino, Sacramento, Columbus, and Jersey City, as summarized in Table 
4.1. The benchmark is a forecast model that is built using only the six cities’ data, which is not statistically 
viable since that would simply be an insufficient sample size.  

Table 4.1. Via service regions (obtained from Via) and pricing policies (defined based on (Via, 2021)) 

City (Via service 
region) 

Counties (transit demand 
considered for potential first last 
mile trips) 

Number of census tracts 
within service region 
boundary 

Pricing 
policy 

Salt Lake City, Utah Salt Lake County 26 PP2 

Austin, Texas Travis and Williamson County 28 PP2 
Cupertino, California Santa Clara County 21 PP2 
Sacramento, 
California 

Sacramento and Placer County 148 PP2 

Columbus, Ohio Franklin and Licking County 45 PP1 

Jersey City, New 
Jersey 

Hudson and New York County 68 PP3 
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4.1. Data  

Table 4.2 presents the data used in our case study, this includes public data for estimation of mode choice 
models, simulation model calibration, and design of deployment portfolio forecast model, along with data 
obtained from Via. For our case study, we focus on ridership during peak period of the day i.e., 6AM-9AM, 
hence all the commute (demand and time data) and Via operation data are considered for this time period 
of the day.  

Table 4.2. Summary of data and data sources used in the study 

Data source Granularity Data 

Census Transportation 
Planning Products 
(2012-2016) (CTPP, 
2016) 

Census Tracts Commute flows between census tracts 
(for various modes including auto, bike, transit, 
walk, and others) 

American Community 
Survey (2019)  

Census Tracts Demographic, economic and household details 

Open Mobility Data 
(GTFS) (Transitfeeds, 
2021) 

Transit network Transit station/stop locations  

Smart Location 
Database (EPA, 2021) 

Census Block Groups  
(aggregated to Census 
Tract level) 

Details on household auto ownership, unprotected 
area, street network (road density), trip equilibrium 
index (trip attraction and production) 

Open Street Map 
(OSM, 2021) 

Street network Auto, Walk, and bike travel time between census 
tracts; walk and bike travel time to and from 
nearest transit stops in census tracts 

Open trip planner 
(OTP, 2021) 

Transit network Transit commute time including in-vehicle time, 
wait time, walk time (to and from the nearest 
stops) 

Via data: weekly 
average during first 
week of 3/20 

Via service regions in 
Salt Lake City, 
Cupertino, Austin, 
Columbus, 
Sacramento, and 
Jersey City in the U.S. 

Via service region boundaries, average ridership, 
average wait time, average ride distance and 
duration, vehicle utilization, pricing policy, fare 
structure  
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4.2. Calibration of the Market Equilibrium Model   

The calibration of the model involves two major parts. The first is the estimation of the mode choice 
model, one for each of the six cities with provided data. After the estimation, each model is connected to a 
day-to-day market equilibrium model that is calibrated to fit the within-day simulation so that the 
equilibrium ridership is close to the observed aggregate average Via ridership values in the region 
(combining direct and first/last mile trips). The mode choice model includes one round of feedback from the 
equilibrium model output to update the Via attributes. Table 4.3 presents the mode choice model 
estimation results that were calibrated after one round of feedback from the simulation model. The p-values 
and 𝜌𝜌2 are based on the initial estimation without microtransit (since there’s no OD-level flow data for 
microtransit).  

 The bottom part of the table compares the estimated error for each city’s model when using the 
optimal 𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀 compared to a model where the 𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀 = 0, and the error reduction is significant. The travel 
time and cost coefficients are negative in most cities, with Salt Lake City having a positive coefficient for walk 
time. Moreover, positive ascMT values observed for Salt Lake City and Cupertino indicate a positive (average) 
effect of latent (unincluded) factors on the utility of the microtransit (Via) in these cities, while an opposite 
effect is noticed in other 4 cities. This observation highlights the effects the city type (among other latent 
factors) may have on the utility of microtransit in the city. 
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Table 4.3. Demand model parameter estimated values (for Via cities) 

Mode choice model coefficient estimates for Via cities 
Coefficient Units Salt Lake 

City, 
Utah 

Austin, 
Texas 

Cupertino, 
California 

Sacramento, 
California 

Columbus, 
Ohio 

Jersey City,  
New Jersey 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 N/A 0.649*** -0.145* Not signif. 0.231*** 0.330*** Not signif. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 N/A -3.318*** -4.393*** -3.934*** -2.494*** -6.555*** -4.004*** 

𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 N/A -1.510*** -1.956*** -0.707*** -0.682*** -1.329*** Not signif. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀 N/A 0.848 -1.096 2.089 -0.689 -7.354 -2.265 

𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 N/A -1.973*** -3.909*** -2.363*** -0.312*** -1.839*** 0.560*** 

𝛽𝛽𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 

 1/min -0.204*** -0.049*** -0.131*** -0.109*** -0.009** -0.177*** 

𝛽𝛽𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 1/min -0.129*** -0.051*** -0.098** -0.105*** Not signif. -0.251*** 

𝛽𝛽𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  1/min 0.033*** -0.006 -0.038 -0.064*** -0.037*** -0.086*** 

𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1/U.S. $ -1.851*** -2.062*** -1.768*** -1.058*** -0.998*** -0.930*** 

𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 N/A 8.326*** 12.895 7.403*** 6.987*** 6.356*** 5.429*** 

𝛽𝛽𝐴𝐴𝐴𝐴 1/min -0.005 Not signif. Not signif. -0.021*** -0.016** Not signif. 

𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  1/min -0.003 Not signif. Not signif. -0.012*** -0.009** -0.001 

𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 1/min -0.005 Not signif. Not signif. -0.019*** -0.014** -0.002 

𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1/min -0.005 -0.075*** -0.200*** -0.019*** -0.014** -0.002 

Mode choice model calibration performance for Via cities 

𝜌𝜌2 (w/o microtransit) 0.78 0.69 0.72 0.78 0.85 0.43 

Min. absolute error 
(pred vs actual Via 
ridership) with 
estimated 𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉 

0.004 0.008 0.003 0.008 0.001 0.002 

Min. absolute error 
(pred vs actual Via 
ridership) 
with 𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉=0 

75.56 244.11 42.91 182.83 1167.14 1908.97 

*, **, *** refer to p-values from initial estimation without microtransit less than 0.05, 0.01, and 0.001 
respectively. 
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The day-to-day adjustment parameters are calibrated as follows. Parameters include the walking limit 
of micro-transit users, micro-transit dwell time, and user/operator weights for the insertion heuristic in 
micro-transit within-day simulation. The performance measure for finding the best insertion option is shown 
as Eq. (4.1), which is a combined measure of the users’ loss and the operator’s loss balanced by operator’s 

weight 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  and user’s weight �1 − 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�. Average operator cost per mile is estimated from the average 

operation cost per passenger provided by (Volinski, 2019), and the average trip length data provided by Via 
(Eq. (4.2)).  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟 =  �1 − 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   (4.1) 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

   (4.2) 

For calibration, we designed 3 discrete levels for each parameter:  

• Walking limit: 0.5 miles, 0.3 miles, 0.1 mile 
• Dwell time: 15 sec, 10 sec, 5 sec 
• Operator weight in insertion heuristic: 0.8, 0.5, 0.2 (the corresponding user weight is 0.2, 0.5, 0.8) 

Hence, 27 combinations are produced. We run the simulation for each of the combinations to find the best 
combination for each city, which is the combination with the smallest sum of squared error of in-vehicle 
time, wait time, and microtransit ridership.  

The calibration results are shown in Table 4.4. This shows that the cities can vary in their characteristics. 
For example, Salt Lake City and Jersey City suggests longer access via walking for travelers, while Austin and 
Salt Lake City tend to have longer dwell times for their vehicles. Cupertino has the highest weight for 
operator cost, which suggests that their travelers are the least elastic to the service quality (and hence more 
weight is assigned to operator cost). Generally, cities with smaller walking limit have smaller operator 
weight, since when the users are more reluctant to walk, user’s weight should be higher. In terms of error, 
the overall ridership error indicates fits with an average of 18.4% among the six cities. Columbus had a 
poorer fit. Jersey City also had less data available so that the in-vehicle and wait time errors could not be 
computed. 
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Table 4.4. Summary of calibration results 

City Calibrated Parameters Opera-
tor cost 
per mile 

($) 

Error 

Walking 
limit 

(mile) 

Dwell 
time 
(sec) 

Operator 
Weight 

In-
vehicle 
Time 
Error 

% Wait 
Time 
Error 

% Ridership 
Error 

% 

Salt Lake 
City 

0.5 15 0.5 5.3 2.2 20.8 4.3 32.5 56 41.5 

Austin 0.1 15 0.2 9.9 13.4 158.8 0.9 9.1 21 12.1 
Cupertino 0.3 5 0.8 8.5 1.6 16.5 5.8 46.7 1 2.0 

Sacramento 0.1 5 0.2 7.3 0.2 1.7 15.5 55.2 44 20.0 
Columbus 0.1 5 0.2 8.3 7.1 93.2 8.5 136.4 2 33.3 
Jersey City 0.5 5 0.5 7.9 - - - - 3 1.2 

AVG.          18.4 

The process of convergence for the 6 cities with the calibrated parameters are shown in Figure 4.1. The 
average computation times for one run of Salt Lake City, Cupertino, Sacramento, Columbus, Austin, and 
Jersey City are respectively 10min 42s, 4min, 6min 24s, 36s, 4min 42s, and 13 min on a laptop with 2.3 GHz 
Quad-Core Intel Core i7 and 32 GB 3733 MHz LPDDR4X memory. The results indicate that steady states do 
exist for these cities and that the number of days to convergence can differ from city to city. 

The results indicate that a market equilibrium model can indeed be calibrated to different cities, and 
the fit to the limited data is on average within 20% which is acceptable. Table 4.5 shows the ridership, VMT, 
fleet size, and perceived time values of population at convergence for the 6 cities as obtained using the 
calibrated market equilibrium model. One interesting observation around the Via ridership is that for Salt 
Lake City and Sacramento, higher proportions of Via ridership are within service region door-to-door trips, 
while for the other 4 cities, first-last mile Via access trips predominantly contribute to the Via ridership in 
respective cities. This highlights the variable effects different operation strategies can have on microtransit 
ridership and consequently on other performance measures (like VMT and fleet size) in different groups of 
cities.   
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(a) Population Perceived Microtransit In-vehicle 
Time 

(b) Population Perceived Microtransit Wait Time 

  

(c) Population Perceived Microtransit Walk Time 

 

 

      (d) Total Number of Microtransit Passengers 
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(e) Microtransit Fleet Size 

Figure 4.1. Convergence of day-to-day adjustment for the 6 cities, with (a) in-vehicle time, (b) wait time, 
(c) walk time, (d) ridership, and (e) fleet size 

 

Table 4.5. Summary of microtransit performance in 6 U.S. cities based on the calibrated market 
equilibrium model; obs is the Via observed data while sml refer to the output of the calibrated market 

equilibrium model 

Cities # days  
until 

convergence 

Fleet  
size 

VMT  Microtransit (Via) 6-9AM ridership  
(Mode Share) 

Perceived time values of the population 
at convergence day  

Total  
(obs) 

Total 
(sml) 

Within 
service 
region  
(Mode 
share %) 

First/ 
Last-mile 
access  
(Mode 
share %) 

In-vehicle time 
(min) 

Wait time 
(min) 

Walk 
time 
(min) 

obs sml obs sml sml 

Salt Lake 
City 

43 9 405.28 135 79 51 
(0.23) 

28 
(2.14) 

10.45 12.69 13.24 8.91 0.03 

Cupertino 23 6 246.58 50 49 9 
(0.16) 

40 
(3.97) 

9.71 11.32 12.42 6.61 0.01 

Sacra 
mento 

22 18 883.19 220 176 152 
(0.25) 

24 
(0.47) 

12.03 12.24 28.09 12.62 0.01 

Columbus 10 7 298.43 6 8 0 
(0) 

8 
(0.85) 

7.62 14.7 6.23 14.69 0 

Austin 15 27 1220.8
8 

174 153 18 
(0.40) 

135 
(12.10) 

8.44 21.81 9.94 9.00 0.02 

Jersey City 11 11 519.73 245 242 79 
(0.48) 

163 
(0.88) 

n/a 5.38 12.9 4.02 0.02 
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4.3. Microtransit Deployment Forecast Portfolio Model 

First, we wish to see if we can use the well-fitted market equilibrium (as shown in Section 4.2) to 

generate new scenarios to use to upscale the data for inferring new insights for microtransit deployment. 

This can be effectively demonstrated by showing that the scenario data can be related to public data to find 

statistically significant relationships.  

4.3.1 Forecast Model Estimation and Validation  

Two sets of models are estimated: one for predicting ridership and one for predicting fleet VMT. For the 
scenario generation, because Jersey City operates under a very different operation and Columbus is such an 
outlier, those two cities are removed from this section’s demonstration effort. In future research, with more 
city data available one should ideally classify clusters of city types (like in (Oke, et al., 2019)) that can be 
fitted to different forecast models.  

These scenarios are assumed to cover a reasonable range of ridership and pricing policies. A set of 326 
scenarios are generated, with characteristics shown in Table 4.6. Based on the peak period average ridership 
and VMT values derived from the market equilibrium of those 326 scenarios used as surrogate data, we 
develop microtransit portfolio forecast models using multiple linear regression with second order 
polynomial (interacting) features. Here the dependent (target) variables for the ridership and VMT models 
include ridership per region population (in thousands) and VMT per region area in acres (in hundreds) 
respectively. We fit this model using the method of least squares and apply lasso regularization for feature 
elimination. 

Table 4.6. Summary of data samples from scenario generation process used in forecast models 

Number of scenarios 326 

Breakdown by city  Salt Lake City: 71, Austin: 79, Sacramento: 100, Cupertino: 
76 

Breakdown of PP1/PP2 PP1: 174, PP2: 152 

Breakdown of L2/L3 scenarios LL2: 178, LL3:148 

Range of number of riders [0,2217] 

Breakdown of direct trips versus 
first/last mile 

direct: [1% - 88%]; first/last mile: [12%-99%] of total 
ridership 
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We consider the following independent variables (pertaining to each service region) in our models, 
where the feature (variable) values of a region are computed as the aggregate of all census tracts in the 
region (details below): 

• Employment density (Total employed population in the region over total unprotected region area in 
acres)  

• Household density (Total households in the region over total unprotected region area in acres). This is 
highly correlated to total population, and male/female population density features, hence we consider 
only one of these in our models.  

• Mean income (Household weighted mean income in the region in U.S. dollars) 
• Street density (Total road network in the region in miles over total unprotected region area in acres) 
• Transit stop density (Total number of transit stops in the region over total unprotected region area in 

acres) 
• Ratio of households with one or more auto (Sum of households with 1 or more auto ownership with 

respect to total households in the region) 
• Trip equilibrium index (mean trip productions and trip attractions equilibrium index in the region; the 

closer to one, the more balanced the trip making) 
• PP1 (if pricing policy in the region is PP1 then 1 else 0) 
• PP2 (if pricing policy in the region is PP2 then 1 else 0) 
• Via fix fare (value of fixed fare in the region in U.S. dollars) 

We use the 326 sample scenarios surrogate data for training the forecast models. The evaluation (i.e., 
test set) is mainly done over the four data points (i.e., Via operated service regions) for which we have the 
actual Via ridership data and corresponding VMT values from the simulation. We consider the coefficient of 
variation (CV) as an evaluation metric, where CV is calculated using Eq. (4.3). 

𝐶𝐶𝐶𝐶 =  
�∑ 𝑦𝑦𝑖𝑖−𝑦𝑦𝑖𝑖

′ 𝑁𝑁
𝑖𝑖=1

𝑁𝑁

 𝑌𝑌�
=  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑌𝑌�
   (4.3) 

where 𝑦𝑦𝑖𝑖  is the actual value and 𝑦𝑦′𝑖𝑖 is the predicted value of the target variable for a sample i (in sample size 
N); 𝑌𝑌� is the mean of the actual values of the target variable across all samples. Table 4.7 shows the 
estimation performance of the forecast models. 
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Table 4.7. Estimation results for the ridership and VMT model 

Model estimation 
City Ridership model VMT model 

Observed Predicted Observed Predicted 
Austin 174 277 1220.88 1505.46 

Cupertino 50 19 246.58 152.94 
Sacramento 220 225 883.19 1068.07 

Salt Lake City 135 211 405.28 778.89 
Model performance 

 
Ridership model VMT model 

Train set R2 0.72 0.9 
Number of features 
(including intercept) 

47 55 

Via cities RMSE 65.92 256.67 
Via cities mean 144.75 688.98 
Via cities CV (%) 45.54 37.25 

The model suggests the ridership and VMT are indeed dependent on employment density, household 
density, mean income, street density, transit station density, and car ownership (estimated feature 
coefficient values are included in Appendix A). In addition, the models show sensitivity to the pricing policy. 
While the model outputs the statistically significant features based on the Lasso regularization, this is still 
done using upscaled data, so it is not feasible to compute an elasticity with respect to these features. 
Nonetheless, this estimation effort demonstrates that upscaling data from just four cities, we can fit models 
well (R2 values fit quite well).  

The key question is whether upscaling improves over having no upscaling at all. Without upscaling, data 
from only the four cities would not allow for even a forecast model to be estimated in the first place. When 
the model’s predictions are compared to the four data samples, the CV of ~ 45% based on only four 
observations is rather adequate. While this is not within an accurate forecast range, it demonstrates that 
upscaling can result in more informative insights than relying only on the original data from four the cities 
alone.  

4.3.2 Application of Forecast Models for Deployment Planning  

To provide a better idea of how the forecast models can be used for microtransit service portfolio 
design in different cities, we consider eight new cities in the U.S. (other than the cities considered in our 
study) i.e., Arlington (Texas), Birmingham (Alabama), Boston (Massachusetts), Chicago (Illinois), Detroit 
(Michigan), Seattle (Washington), St. Louis (Missouri), and Washington D.C. Assuming a constraint on total 
VMT (i.e., a budget constraint around the same value as the total VMT observed for the four Via cities 
considered in the case study), we present alternative portfolios for service deployment in different cities. For 
each of the eight cities, we generate various L2 scenarios (service regions) and get their population and built 
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environment characteristics. We apply PP1 pricing policies to the cities with fares based on the transit fares 
in respective cities. We use the VMT forecast model and select service regions from different cities such that 
the total forecasted VMT matches the budget considered. We design two alternative service portfolios as 
shown in Figure 4.2 and 4.3 and use the ridership forecast model to estimate the peak period ridership for 
the two portfolios.  

 

(a)  

 

(b)  

Figure 4.2. Portfolio design #1 for microtransit service deployment in 4 U.S. cities (a) estimated ridership 
and VMT in each city; circle radius is by ridership (values labeled in the figure), and circle sequential colors 

is by VMT (in the legend) (b) microtransit service regions in cities 
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(a) 

 

(b) 

Figure 4.3. Portfolio design #2 for microtransit service deployment in 6 U.S. cities (a) estimated ridership 
and VMT in each city; circle radius is by ridership (values labeled in the figure), and circle sequential colors 

is by VMT (in the legend) (b) microtransit service regions in cities 

The total forecasted ridership values in portfolios #1 and #2 are 1.4 times and 1.9 times higher than 
the total ridership of the four Via cities for the same value of total VMT. Although we have presented only 
two alternative portfolio designs assuming one pricing policy in all cities and a VMT constraint, microtransit 
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operators can use such forecast models to help public agencies compare across multiple service portfolios by 
optimizing for ridership, considering additional operation cost constraint, applying different pricing and 
operating policies to specific cities (e.g., based on city types), etc. Hence, this can be used as an effective 
decision-support tool for microtransit service deployment planning for strategizing resource-allocation and 
investment decisions.  

4.4. Discussion 

Transportation technologies are not “one-size-fits-all” solutions; this point is clearly demonstrated by 
the 67%/23%/50% failure rates of demand-responsive transport services implemented in UK/Europe/North 
America. Emerging technologies like microtransit need to have effective decision-support tools, which are 
limited by the complexity of the decisions that need to be made, the limited availability due to the 
“emerging technology” aspect, and due to the myriad of operations that expand the dimensionality of the 
problem further. For example, even a success story like Via only operates in less than 40 U.S. cities while 
there are over 3000 cities with populations of 10,000 or more.  

Identifying the right cities to enter their markets requires having some understanding of the typology of 
these cities. We propose a supervised machine learning approach (details in Section 5) to predict a city's 
typology given the information in its Wikipedia page. Our proposed method leverages recent breakthroughs 
in natural language processing, namely sentence-BERT (Reimers & Gurevych, 2019), and shows how the text-
based information from Wikipedia can be effectively used as a data source for city typology prediction tasks 
that can be applied to over 2000 cities worldwide. 

5. City Typology Prediction using Wikipedia 

City typologies or profiles based on the dynamics of mobility in cities can allow easy identification of 
comparable cities for learning best practices and policies in the urban mobility planning context. City 
typologies have been studied in the past based on broad economic and geo-graphic forms. For example, 
(Harris, 1943) classified cities by economic functions like manufacturing, retail, education, etc., while 
(Creutzig, et al., 2015) proposed 8 typologies oriented around socioeconomic and environmental indicators 
to classify 274 cities. In terms of transportation metrics, studies have found that cities do exhibit 
commonalities, whether it is in road networks  (Louf & Barthelemy, 2014) or public transit services (Derrible 
& Kennedy, 2010; Fielbaum, et al., 2017). A number of research studies have also identified typologies for 
cities (Thomson, 1978; Cervero, 1998; Priester, et al., 2013) focusing on the transportation aspects. A recent 
study by Oke et al. (2019) uses hierarchical clustering to present a mobility-based typologization covering 
331 cities (across the globe) using factors related to transportation, demographic, geographic, economic, 
and environmental dimensions of cities. In their study, authors present 12 typologies grouped into 6 high 
level categories as shown in Table 5.1.  
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Table 5.1. Summary of the high-level city typologies based on (Oke, et al., 2019) 

City typology Description Example cities 

Auto Auto dependent Washington DC, Toronto, Raleigh, Kuwait City 
Bus transit High usage of bus transit Rio de Janeiro, Jakarta, Tehran, Mecca 
Congested Congestion in cities Bangalore, Lagos, Manila, Port-au-Prince 
Metro bike High bike share and metro Ningbo, Zhengzhou, Shenzhen, Chongqing 
Mass transit High usage of mass transit Singapore, Seoul, Tel Aviv, London 
Hybrid Mix of mode choices Busan, Lisbon, Santiago, Johannesburg 

For the most part, researchers have restricted the scope of their analysis to a limited number of cities due 
to data scarcity in many cities (especially in developing countries) mainly relying on datasets made available 
by city agencies, private sector companies, transportation operators, and universities.  As such, application 
of these typologies to cities at a large, global-wide scale, e.g., on the order of thousands of incorporated 
places around the world, is not currently feasible, especially across multiple countries. We explore the usage 
of Wikipedia as such a source of data for identifying city typologies.  

Wikipedia is unique in many aspects; it is essentially the largest digital encyclopedia worldwide that is 
powered by millions of crowd-sourced content editors and moderators. Enhanced at a rate of over 1.9 edits 
every second (Wikimedia statistics, 2021), Wikipedia serves as a reliable and inexpensive source of 
information. Wikipedia not only provides a wide range of information on various aspects of cities (such as 
transportation, demography, geography, economy, environment, education, culture, and others) in a 
consolidated manner, but also does it at an unparalleled scale (i.e., covering thousands of cities across the 
world for which detailed data may not be available otherwise).  

For example, in the study by (Oke, et al., 2019), New York City (NYC) was assigned the transit-heavy city 
typology label based on multiple data sources excluding Wikipedia. Assuming, the Wikipedia page on NYC 
has supporting evidence that the city is indeed transit-heavy, if a human reader was tasked with identifying 
supporting lines, it would be an easy task to surface the lines highlighted in Figure 5.1 (which strongly 
support the transit-heavy label). Furthermore, the Wikipedia page may also contain information on different 
aspects of the city including recent demographic estimates and numbers from the infobox fields which may 
be latent factors influencing the typology. 
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Figure 5.1. New York City’s Wikipedia page: The infobox is structured with fields and their values, whereas 
the article body text is unstructured. Lines indicative of the city typology (transit-heavy as per (Oke, et al., 

2019)) have been highlighted 

Similar information from Wikipedia on transportation scenarios in other cities could plausibly paint a 
picture of the typology of respective cities. But extracting such information in an automatic manner, e.g., via 
a model which understands the city's Wikipedia page from the perspective typology prediction is a 
challenging task.  

Due to challenges in extracting useful information from long unstructured text, Wikipedia  has remained a 
largely unexplored data source for transportation related studies. In the larger context of text understanding, 
the task of understanding and representing sentences (and paragraphs) for downstream prediction tasks has 
been an area of active research in the natural language processing (NLP) research community for several 
decades.  

We propose a novel method to algorithmically extract lines from a city’s Wikipedia page which 
semantically match a known set of possible typologies (e.g., congested, transit-heavy, auto- heavy or bike-
friendly), and use the typology-wise match scores to form a 4-dimensional vector representation (feature 
vector) for a city’s Wikipedia page. In addition, we use information from structured components like the 
infobox (e.g., population density) as an additional numeric feature for a city and use the resultant low 
dimensional feature vector for training a logistic regression model for city typology prediction. In particular, 
we use the labels in (Oke, et al., 2019) as ground truth labels for ~300 cities, and we adopt a one-versus-all 
approach for multi-class classification (i.e., train binary classifiers for 4 different city typologies, and study 
their prediction accuracy). With such trained models, we can easily propagate the labels in ~300 cities in (Oke, 
et al., 2019), to over 2,000 cities in Wikipedia. Our main contributions can be listed as follows: 
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1. We propose a low dimensional representation of a city’s Wikipedia page for the task of city 
typology prediction. The representation is based on algorithmically identifying lines in the Wikipedia 
page which semantically match (via SBERT) a known typology and use their match scores to form 
features. 

2. We propose an iterative keyline expansion method which finds a set of representative lines (which 
we refer to as keylines) from Wikipedia pages of cities; these representative  (key)lines allude to a 
known city typology and are crucial for identifying similar lines in cities beyond the training data set. 

3. Using our trained model, we predict city typology scores (for different typologies) for over 2,000 
cities present in Wikipedia. To the best of our knowledge, this is the largest dataset/analyses in scope 
on mobility-based city typology inferences. 

We provide a brief literature review in Section 5.1, discuss the problem formulation and objectives in 
Section 5.2. We describe our proposed methodology in Section 5.3, followed by experiments in Section 5.4 
and results in Section 5.5.  

5.1. Literature Review 

5.1.1. Usage of Crowd-sourced Data in Transportation and Urban Planning 

The advent of user-generated information (including data from social media accounts, GPS, smart cards, 
and mobile phones) and the ease of data access opened various opportunities for multidisciplinary research. In 
the context of city understanding (particularly focusing on the transportation aspect), several studies have 
utilized location-based user-generated data (e.g., social media check- ins, geo-tags, GPS, and smartphone 
data) (Zhan, et al., 2014). In this setting, the livelihoods project by (Cranshaw, et al., 2012) classifies the 
livelihood dispersion patterns in a city using geo-location data. (Hasan, et al., 2013) characterize human 
patterns in a city based on purpose-specific activities using location based social media data. Similarly, 
(Louail, et al., 2014) study the morphological patterns in 31 Spanish cities. Lenormand et al. (2015) perform a 
systematic comparison between five cities in Spain based on the land use patterns from mobile phone 
records. Calafiore, et al. (2021) model cities as series of global urban networks to obtain functional 
neighborhoods based on human dynamics and their contexts, across a sample of 10 global cities.            A detailed 
overview of big data analysis for the systematic study of cities and urban phenomena can be found in 
(Lenormand & Ramasco, 2016) and (Martí, et al., 2019). 

5.1.2. Text Understanding 

Wikipedia is a rich source of crowd-sourced information on cities. The information in Wikipedia is generated 
at no cost (updated by numerous contributors worldwide) and verified regularly by moderators. So far, it has 
been a free online service, and is also freely available for off-line analysis. However, much of the useful 
(qualitative) information is in a textual format (in unstructured article bodies), and extracting such 
information automatically is difficult. A few recent studies have investigated Wikipedia as a potential 
indicator of city characteristics (e.g., smart city related expressions (Cronemberger, et al., 2018), and for 
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understanding poverty and education across sub-Saharan African nations (Sheehan, et al., 2019). However, to 
the best of our knowledge, there is no prior work on predicting a city’s typology using its Wikipedia page; we 
believe that the hardness in understanding unstructured Wikipedia text and    limited labeled data on city 
typologies (Oke, et al., 2019) may have contributed to the lack of prior work in this                          direction. 

Fundamentally, in our supervised learning setup, the objective is to map a Wikipedia page                              (on a city) to a 
label (e.g., binary label indicating whether it is transit-heavy or not). However, in its raw form, the Wikipedia 
page is a collection of lines (with multiple words in a line). To represent such a page numerically (for training 
a machine learning model and eventually mapping it to a label), one of the earliest approaches was to simply 
encode it in a bag-of-words fashion, i.e., by using a vector of size equal to the vocabulary, and populating it with 
weighted word counts (TF-IDF (Jones, 1974; Salton, 1968)). However, such an approach led to high feature 
dimensions (English documents can easily lead to a vocabulary size in the order of tens of thousands), and the 
bag-of-words representation did not capture the sequencing of words in a document (the sequence can easily 
alter the semantics). 

A subsequent approach, Doc2Vec (Le & Mikolov, 2014), made progress towards low dimensional document 
representation (embedding), but was still limited in its ability to capture sequences and under- stand 
context. Around the same time, for short text (e.g., a sentence), using the average of low- dimensional word 
embeddings (of words in the sentence) also became a popular method for sen- tence representation; 
Word2Vec (Markov, et al., 2021), FastText (Joulin, et al., 2016), and GloVe (Pennington, et al., 2014) are 
examples of such low dimensional word embedding methods. However, since the average does not capture 
the exact sequence of words, such methods are still limited in capturing the semantics. 

A major breakthrough in the sentence representation problem came with the introduction of BERT 
(Bidirectional Encoder Representations from Transformers) by Devlin et al. (2019) which uses a neural 
network architecture called Transformer (Vaswani et al., 2017) to capture the exact sequence of words and 
learn the context (by utilizing both the forward sequence and the backward sequence, and hence becoming 
bidirectional in nature). BERT and its variants for text representation led to the state-of-the-art results for 
many natural language processing tasks (e.g., text classification, and sentiment analysis). Furthermore, 
sentence-BERT (Reimers & Gurevych, 2019) leveraged a pre-trained BERT model (trained on millions of 
English examples) and was fine tuned for textual similarity. In other words, sentence-BERT can be used to 
get a 768-dimensional embedding for a sentence, and the semantic similarity of two sentences can be 
effectively gauged by the cosine similarity between their embeddings. We leverage this property of 
sentence-BERT embeddings in our proposed approach. 

Finally, it should be noted that simply using sentence-BERT does not solve the problem of city typology 
prediction using Wikipedia; the remaining bottleneck comes from the low volume of labeled data (even 
lower than 768, which is the sentence-BERT dimension size), and the restriction that sentence-BERT can only 
process a sentence and not Wikipedia pages comprising of hundreds of lines. As described later, we propose 
a novel method to leverage sentence-BERT embeddings of lines in a Wikipedia page, to form a low 



 

  Urban Microtransit Cross-Sectional Study for Service Portfolio Design  
46 

dimensional representation of the page such that supervised training with a few hundred labeled cities is 
sufficient. 

5.2. Problem Formulation 

5.2.1. Setup 

We assume a set 𝑊𝑊 of Wikipedia pages (size of the set denoted by (|𝑊𝑊|). Each page 𝑊𝑊𝑖𝑖 ⊂ 𝑊𝑊 corresponds to 
a unique city (anywhere in the globe). We focus on two components of each page in 𝑊𝑊: (i) unstructured text 
from different sections (main body), and (ii) structured data from the infobox (like the one illustrated in 
Figure 5.1). Sections commonly found in city Wikipedia pages include demography, geography, history, 
economy, education, and transportation (not necessarily with the same section titles), along with a general 
description of the city in the introduction paragraph. In our setup, for simplicity, we ignore text from the 
footnotes and references, as their mentions in the main body are preserved and typically provide enough 
context. In addition, from the infobox, we      extract demographic information on population densities of cities. 
For cities without density data, we compute the missing values using population and area data extracted 
from the infobox.  

As ground truth (typology) label for each city, we leverage the transportation related city typology labels 
provided by Oke et al. (2019) for 331 cities (worldwide). In the highest level of their hierarchical 
typologization, Oke et al. (2019) have six city typologies. For example, as shown in Table 5.1, typologies such as 
auto or mass transit mainly denote high usage of respective modes in cities, whereas congestion typology 
indicates high level of congestion in the city. Each of the 331 cities is assigned one of the six labels. Based on 
these typologies, we define four distinct city categories in our study i.e., ‘auto-heavy’ (auto-dependent), 
‘transit-heavy’ (high usage of public transit), ‘bike-friendly’ (high share of bike usage) and ’congestion’. For 
simplicity, we combine the mass transit and bus transit labels to form the ‘transit-heavy’ label (i.e., a city is 
considered transit-heavy in our study if it is either labeled mass transit or bus transit in Oke et al. (2019)) and 
discard cities with the ‘hybrid’ label in Oke et al. (2019). This leaves us with 282 cities, with each city having 
one of the four possible labels: congestion, auto-heavy, transit-heavy, and bike-friendly (metrobike). We 
adopt a one-versus-all approach where we focus on separately classifying a city for auto-heavy, transit-
heavy, bike-friendly, and congestion labels      (as explained in Section 5.2.2 below). 

5.2.2. Objective 

The objective of our study is to automatically answer the following questions about a city given its 
Wikipedia page. 

1. Congestion prediction: is the city congested? 

2. Auto-heavy prediction: are automobiles the major mode of transport for this city? 
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3. Transit-heavy prediction: is public transit the major mode of transport for this city? 

4. Bike-friendly prediction: is bike a common form of transportation in this city? 

With the one-versus-all approach, we formulate four binary classification problems leading to the following 
conditional probability estimates for a city 𝑖𝑖 as Eqs. (5.1)-(5.4).  

𝑝𝑝 ̂𝑖𝑖
(𝑐𝑐)=P (city is congested | city’s Wikipedia page) (5.1) 

𝑝𝑝 ̂𝑖𝑖
(𝑎𝑎)=P (city is auto-heavy | city’s Wikipedia page) (5.2) 

𝑝𝑝 ̂𝑖𝑖
(𝑡𝑡)=P (city is transit-heavy | city’s Wikipedia page) (5.3) 

𝑝𝑝 ̂𝑖𝑖
(𝑏𝑏)=P (city is bike-friendly | city’s Wikipedia page) (5.4) 

    The training objective for each of the four binary classifiers is the minimization of the binary-cross-
entropy loss (log-loss) across all training samples (Murphy, 2012). Hence, the objective for the congestion 
prediction classifier can be stated as Eq. (5.5). 

min �−� �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
(𝑐𝑐)� ln �𝑝̂𝑝𝑖𝑖

(𝑐𝑐)� + �1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
(𝑐𝑐)� ln �1 − 𝑝̂𝑝𝑖𝑖

(𝑐𝑐)�
𝑛𝑛

𝑖𝑖=1
�       (5.5) 

where the sum is across all training samples (of size n), 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
(𝑐𝑐) ∈ {0,1} is  the  congestion (binary) label for a 

city 𝑖𝑖 (i.e., the label is 1 if city is congested, 0 otherwise), and 𝑝𝑝 ̂𝑖𝑖
(𝑐𝑐) is the probability estimate for the city 

being congested given the information in its Wikipedia page. The  objectives for the auto-heavy, transit-heavy, 
and bike-friendly classifiers can be written in a similar  manner. 

5.3. Methodology 

5.3.1. High-level Overview 

In our supervised learning approach, we first represent a city 𝑖𝑖 via a 5-dimensional feature vector. The 
feature vector includes congestion, auto-heavy, transit-heavy, and bike-friendly keyline features and a 
numeric feature (i.e., population density). Intuitively, the congestion keyline feature indicates the presence of 
a line (text) in the city’s Wikipedia page (main body) which strongly indi cates that the city is congested; the 
term keyline is used since each line in the city’s Wikipedia page is checked for semantic similarity with a pre-
determined set of representative (key)lines indicating congestion. The keyline features for auto-heavy, 
transit-heavy, and bike-friendly are designed in the same spirit. Eq. (5.6) represents the 5-dimensional 
feature vector 𝑓𝑓𝑖𝑖 for a city 𝑖𝑖.  
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𝑓𝑓𝑖𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓𝑓𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑓𝑓𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑓𝑓𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⎭

⎪⎪
⎬

⎪⎪
⎫

=

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑓𝑓𝑖𝑖

(𝑐𝑐)

𝑓𝑓𝑖𝑖
(𝑎𝑎)

𝑓𝑓𝑖𝑖
(𝑡𝑡)

𝑓𝑓𝑖𝑖
(𝑏𝑏)

𝑓𝑓𝑖𝑖
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⎭

⎪⎪
⎬

⎪⎪
⎫

                                (5.6) 

where 𝒇𝒇𝒊𝒊 ∈ 𝑅𝑅5,𝑓𝑓𝑖𝑖
(𝑐𝑐) ∈ [−1,1] denotes the congestion keyline feature, 𝑓𝑓𝑖𝑖

(𝑎𝑎) ∈ [−1,1] denotes the auto keyline 

feature, 𝑓𝑓𝑖𝑖
(𝑡𝑡) ∈ [−1,1] denotes the transit keyline feature, and 𝑓𝑓𝑖𝑖

(𝑏𝑏) ∈ [−1,1] denotes the bike keyline 
feature (extracted from unstructured text in Wikipedia main body). Given the above city representation, our 

approach is to train four logistic regression models to come up with the estimates 𝑝𝑝 ̂𝑖𝑖
(𝑐𝑐),𝑝𝑝 ̂𝑖𝑖

(𝑎𝑎),𝑝𝑝 ̂𝑖𝑖
(𝑡𝑡) 𝑝𝑝 ̂𝑖𝑖

(𝑏𝑏) for a city 
𝑖𝑖 as formulated in Eqs. (5.1)-(5.4). An illustration of the above process is shown in Figure 5.2. 

 

 

Figure 5.2. High-level overview of our proposed method for city typology classification using Wikipedia 
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5.3.2. Supervised Learning using Logistic Regression 

For brevity, we describe the logistic regression model in the context of estimating 𝑝𝑝 ̂𝑖𝑖
(𝑐𝑐) for city 𝑖𝑖, i.e., 

the chances of city 𝑖𝑖 being congested given its Wikipedia page (the models for estimating 𝑝̂𝑝(𝑎𝑎), 𝑝̂𝑝(𝑡𝑡),𝑎𝑎𝑎𝑎𝑎𝑎 𝑝̂𝑝(𝑏𝑏) 

can be described in a similar manner). For estimating 𝑝𝑝 ̂𝑖𝑖
(𝑐𝑐) via logistic regression, we consider the following 

parametric form as in Eq. (5.7). 

 𝑝𝑝 ̂𝑖𝑖
(𝑐𝑐)  =  1

1+𝑒𝑒−(𝑤𝑤𝑇𝑇𝒇𝒇𝑖𝑖+𝑏𝑏) 
            

    (5.7) 

where the learning parameters 𝒘𝒘 ∈ 𝑅𝑅5, and bias 𝑏𝑏 ∈ 𝑅𝑅 are optimized by minimizing the binary cross-

entropy loss function as defined in Eq. (25). Note that for estimating 𝑝𝑝 ̂𝑖𝑖
(𝑐𝑐),𝑝𝑝 ̂𝑖𝑖

(𝑎𝑎),𝑝𝑝 ̂𝑖𝑖
(𝑡𝑡)   and 𝑝𝑝 ̂𝑖𝑖

(𝑏𝑏), we employ 

the same set of features 𝒇𝒇𝒊𝒊 (as used for 𝑝𝑝 ̂𝑖𝑖
(𝑐𝑐) above). In the following section, we describe the keyline 

features that occupy the first 4 dimensions of 𝒇𝒇𝒊𝒊.     

5.3.3. Keyline-based Feature Engineering 

5.3.3.1. Semantic Textual Similarity 

The notion of semantic textual similarity (Reimers & Gurevych, 2019) originated in the field of NLP, where 
the underlying task was to automatically identify if two sentences have similar meaning (i.e., one sentence is 
a paraphrased version of the other). For example, a perfect model for semantic textual similarity is expected 
to identify the following similar and dissimilar sentences: 

• Example 1: (this city is congested, this city suffers from traffic jams)   similar (score of 1), 
• Example 2: (this city is congested, this city does not experience traffic jams)  dissimilar (score of -1) 

Note that semantic textual similarity is a very challenging task; even in the above example, a model needs to 
be intelligent enough to understand that congestion and traffic jams are related, while does not experience 
traffic jams means there is no congestion. Due to the introduction of SBERT, the state-of-the-art 
performance for semantic textual similarity tasks has seen a step-jump (thereby encouraging downstream 
applications like the one we propose in this study). In our setup, we directly use the SBERT model fine-tuned 
for the semantic-textual-similarity task. SBERT can be used in the following manner to estimate the semantic 
similarity between a pair of sentences (lines) 𝑙𝑙𝑖𝑖 and 𝑙𝑙𝑗𝑗 in Eq. (5.8). 
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         𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑙𝑙𝑖𝑖, 𝑙𝑙𝑗𝑗� =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝜙𝜙(𝑙𝑙𝑖𝑖),𝜙𝜙�𝑙𝑙𝑗𝑗�) 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑗𝑗� =  𝜙𝜙(𝑙𝑙𝑖𝑖).𝜙𝜙�𝑙𝑙𝑗𝑗�

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜙𝜙(𝑙𝑙𝑖𝑖)�×𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜙𝜙�𝑙𝑙𝑗𝑗��
 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑗𝑗� = 𝜑𝜑�(𝑙𝑙𝑖𝑖)𝑇𝑇 × 𝜑𝜑��𝑙𝑙𝑗𝑗�         

             (5.8) 

where 𝜙𝜙(𝑙𝑙) ∈ 𝑅𝑅768 denotes the 768-dimensional sentence-embedding for sentence 𝑙𝑙 using the trained 
sentence-BERT model in (Reimers & Gurevych, 2019). Eq. (5.8) is essentially the cosine-similarity between 
the embeddings of the two sentences (and is in the range [-1,1]). The cosine similarity between two vectors 
can be defined as the inner product of the same vectors normalized to both have length 1. The sentence 
embedding 𝜙𝜙(𝑙𝑙) is normalized to have unit 𝑙𝑙2 norm; 𝜑𝜑�(𝑙𝑙) denote the normalized vector and T denotes the 
transpose operation.  

Essentially, the cosine similarity between two lines (𝑙𝑙𝑖𝑖 and 𝑙𝑙𝑗𝑗) can be calculated using matrix 

multiplication on the two normalized vectors (𝜑𝜑�(𝑙𝑙𝑖𝑖)𝑇𝑇  and 𝜑𝜑�(𝑙𝑙𝑗𝑗)). Based on this calculation, two sentences 

with similar meaning will have higher scores than two non-similar sentences.  

5.3.3.2. Keyline Similarity Features 

Assuming the presence of a semantic-textual-similarity model as described above, we focus on the 
following idea. Consider the congestion prediction task, where one is given the Wikipedia page of a city and 
has to estimate the chances of the city being congested. Intuitively, if the Wikipedia page has line(s) which 
are semantically similar to ‘the city suffers from traffic congestion’, there may be a good chance that the city 
is indeed congested. However, there may be other ways in which the city's congestion problem may be 
expressed in the Wikipedia page. For example, ‘cars are stuck for hours on the main roads of the city on 
weekdays’ is another plausible (key)line representing congestion. 

Building on this intuition, if we can construct a small yet representative set of keylines indicating 
congestion in a city, we can check each line in a city's page (as shown in the bi-partite graph in Figure 5.3 
with the representative keylines to see if there is a high semantic similarity; having a set of keylines just casts 
a wider net compared to having just one keyline. The highest semantic similarity score across all possible 
pairs is derived from the keylines and the city's Wikipedia page lines can then serve as a congestion keyline 

feature for the city (i.e, 𝑓𝑓𝑖𝑖
(𝑐𝑐)  for a city 𝑖𝑖), as illustrated in Figure 5.3. This is precisely the idea behind the 

congestion keyline feature proposed in this study and we give a formal description below. 
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Figure 5.3. Illustration of congestion keyline similarity feature extraction from a city’s Wikipedia page 

Consider the Wikipedia page of city 𝑖𝑖 and the indexed set of lines {𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖1,𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖2, … … ,𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}  in the 
main body of the page (assuming the page 𝑖𝑖 has 𝑀𝑀𝑖𝑖 lines of text). Using Eq. (26) to compute semantic 
similarity between two sentences, the congestion keyline feature can be computed as Eq. (5.9).  

𝑓𝑓𝑖𝑖
(𝑐𝑐) = max

1≤𝑗𝑗≤𝑀𝑀𝑖𝑖
max

1≤k≤|𝐊𝐊(c)|
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑘𝑘𝑦𝑦𝑘𝑘

(𝑐𝑐)�                (5.9) 

where 𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖  is the 𝑗𝑗th line in the city 𝑖𝑖's Wikipedia page, 𝑘𝑘𝑘𝑘𝑦𝑦𝑘𝑘
(𝑐𝑐) is the 𝑘𝑘th keyline in the set of keylines for 

congestion (set denoted by 𝐊𝐊(c)), and the feature value 𝑓𝑓𝑖𝑖
(𝑐𝑐) is the maximum cosine similarity between all 

Wikipedia page lines of the city, and all the keylines in the congestion keyline set 𝐊𝐊(c) (similarity calculated 
using Eq. (5.8)). 

The auto, transit, and bike keyline features can be stated in a similar manner as shown in Eqs. (5.10)-(5.12). 

𝑓𝑓𝑖𝑖
(𝑎𝑎) = max

1≤𝑗𝑗≤𝑀𝑀𝑖𝑖
max

1≤k≤|𝐊𝐊(a)|
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘𝑦𝑦𝑘𝑘

(𝑎𝑎)�     (5.10) 

𝑓𝑓𝑖𝑖
(𝑡𝑡) = max

1≤𝑗𝑗≤𝑀𝑀𝑖𝑖
max

1≤k≤|𝐊𝐊(t)|
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑘𝑘𝑦𝑦𝑘𝑘

(𝑡𝑡)�     (5.11) 

𝑓𝑓𝑖𝑖
(𝑏𝑏) = max

1≤𝑗𝑗≤𝑀𝑀𝑖𝑖
max

1≤k≤|𝐊𝐊(b)|
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑘𝑘𝑦𝑦𝑘𝑘

(𝑏𝑏)�     (5.12) 

where 𝐊𝐊(a), 𝐊𝐊(t), and 𝐊𝐊(b)denote the auto, transit and bike keyline sets respectively. For computational 
efficiency, the above features can be computed via a matrix multiplication (between a matrix of stacked 
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embeddings of the Wikipedia page lines and matrix of stacked keyline embeddings). The above feature 
computations assume a set of keylines for congestion, auto, transit and bike. We describe in the following 
section an algorithm to obtain such keyline sets starting from an initial guess and iteratively extracting lines 
from Wikipedia pages of cities in the training dataset. 

5.3.3.3. Keyline Sets (Initial Guess and Set Expansion)  

We describe below our proposed method for constructing the set 𝐊𝐊(c), i.e., keylines for 
congestion (the method for 𝐊𝐊(a), 𝐊𝐊(t), and 𝐊𝐊(b) is similar and their description has been skipped for brevity). 

To construct the keyline sets 𝐊𝐊(c), 𝐊𝐊(a), 𝐊𝐊(t), and 𝐊𝐊(b)  we start with initial guesses for these sets (one line 
for each set). These initial keyline guesses will be referred to as anchor text, and our choices in this study are 
listed in Table 5.2. 

Table 5.2. Initial keylines (anchor text) for the city typology prediction tasks considered in this study 

Keyline feature type Initial keyline or anchor text Notation 

congestion ‘the city has heavy traffic congestion’ anchor(c) 
auto ‘most people in the city use cars’ anchor(a) 
transit ‘most people in the city use public transit like bus and metro’ anchor(t) 
bike ‘many people in the city use bike or cycle’ anchor(b) 

The keyline set expansion algorithm assumes that we have a dataset consisting of Wikipedia cities, and their 
congestion labels (i.e., congested or not congested). We randomly divide the dataset into train and test sets 
and use only the train data to extract additional keylines. Specifically, we focus on all cities in the train set which 
are labeled positive (i.e., congested). From each positively labeled city 𝑖𝑖 in the train set, we extract a 
candidate congestion keyline as shown in Eq. (5.13). 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖
(𝑐𝑐) = 𝑎𝑎𝑎𝑎𝑎𝑎 max

1≤𝑗𝑗≤𝑀𝑀𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑐𝑐)�  (5.13) 

where 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑐𝑐) is the anchor text for the congestion feature as listed in Table 5.2. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑒𝑒𝑖𝑖
(𝑐𝑐) is 

the semantically closest line in the page of city 𝑖𝑖 compared to the anchor text for congestion. For example, a 
candidate keyline obtained from the Wikipedia page of the city Manila is ‘Manila is notorious for its frequent 
traffic jams and high densities’. 
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Using similar notations as in Eq. (5.13), candidate keylines for auto, transit, and bike are extracted using 
Eq. (5.14) – (5.16) respectively. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖
(𝑎𝑎) = 𝑎𝑎𝑎𝑎𝑎𝑎 max

1≤𝑗𝑗≤𝑀𝑀𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑎𝑎)�         (5.14) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖
(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎 max

1≤𝑗𝑗≤𝑀𝑀𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑡𝑡)�   (5.15) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖
(𝑏𝑏) = 𝑎𝑎𝑎𝑎𝑎𝑎 max

1≤𝑗𝑗≤𝑀𝑀𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑏𝑏)�   (5.16) 

For each feature, we collect all such candidate keylines from the training dataset (as shown in Figure 5.4) 
and sort them in decreasing order of similarity score with their anchor texts. For congestion we obtain the 

list of sorted candidate keylines as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐). 

 

Figure 5.4. Selection of candidate keylines for a feature type 𝒙𝒙 from 𝒏𝒏 Wikipedia pages 

The keyline set expansion method for the feature congestion is outlined in Algorithm 5.1. We first initialize 
the feature keyline sets with the respective anchor texts (singleton keyline sets). We then go over all 

candidates in the ordered 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐) list (in the train set), and greedily add one candidate at a 

time to the keyline set 𝐊𝐊(c). In each iteration e (where we add a candidate), we derive the keyline similarity 

feature 𝑓𝑓(𝑐𝑐) from the current iteration’s keyline set 𝐊𝐊(c). (using Eq. (5.9)). The 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑡𝑡)  and 𝑓𝑓(𝑏𝑏)  features 
for training the logistic regression model in each iteration are derived from only the anchor texts in the 

corresponding singleton keyline sets 𝐊𝐊(a), 𝐊𝐊(t), and 𝐊𝐊(b) (using Eqs. (5.10)-(5.12)). Using the computed 
features, we train the logistic regression model for the congestion prediction task. Using the trained logistic 
regression model on the validation set, we record the validation set performance metric (AUC, i.e., area 
under the receiver operating characteristic curve for binary classification predictions). We keep track of the 
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validation metric across all iterations, and finally select the iteration (and the corresponding keyline set) with 
the best validation set performance to arrive at the optimized (and expanded) keyline set   for congestion. 

Algorithm 5.1. Greedy keyline set expansion for congestion keyline feature (using validation set 
performance) 

Input: train set, validation set, 𝐊𝐊(a) = {anchor(a)}, 𝐊𝐊(t), = {anchor(t)}, 𝐊𝐊(b)= {anchor(b)}, 
num_candidates = |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐)| in train set 

Output: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, optimized expanded keyline set 𝐊𝐊𝑜𝑜𝑜𝑜𝑜𝑜
(c)  

1. Initialization: max_AUC = 0, candidate_index = 1, 𝑚𝑚𝑚𝑚𝑚𝑚_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0, K(c) = {anchor(c)} 
2. while candidate_index ≤ num_candidates do  

3. ADD candidate from 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐)| to congestion keyline set K(c), 
4. COMPUTE keyline similarity features: 𝑓𝑓(𝑐𝑐), 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑡𝑡)  and 𝑓𝑓(𝑏𝑏) from 𝐊𝐊(c), 𝐊𝐊(a), 𝐊𝐊(t), and 

𝐊𝐊(b) respectively (using Eqs. (5.9)-(5.12)), 
5. TRAIN congestion classification model using train set, compute validation AUC (using vali- dation 

set), 
6. if validation AUC > max_AUC do 

o max_AUC  validation AUC, 
o max_expansion  candidate_index, 
o continue 

7. candidate_index ← candidate_index + 1 
𝐊𝐊opt

(c) =  𝐊𝐊(c)[:𝑚𝑚𝑚𝑚𝑚𝑚_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1] 

 

Note that the (typology) classification model used in the keyline expansion method is based on the 
feature whose keyline set is to be expanded. For example, if the method is applied to the congestion feature 

in order to get a representative set of keylines indicating congestion (𝐊𝐊(c)), then the congestion typology 
classification model is used (as shown in Algorithm 5.1). Similarly, we use auto-heavy typology classifier for 

computing 𝐊𝐊(a),  transit-heavy typology classifier for 𝐊𝐊(t), and bike-friendly typology classifier for 𝐊𝐊(b)  along 

with the features computed using these sets (𝑓𝑓(𝑐𝑐), 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑡𝑡)  and 𝑓𝑓(𝑏𝑏)). These features are used as initial 
input variables in the congestion typology classification model.  

To assess performance of the LR models used in the keyline set expansion method (Algorithm 5.1 step 5), 
we perform 3-fold cross-validation. Cross-validation gives an idea about how well the trained model will 
generalize for an unseen dataset and avoids fitting the model to just the training dataset. To do this, at each 
iteration 𝑒𝑒,we split our training dataset into three equal parts; for each instance (part) in our dataset, we 
build a logistic regression model using all other instances and then validate it on the selected instance (i.e., 
validation set). In our setup, the 3-fold cross validation process is repeated three times for each iteration, 
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and the mean AUC value across all folds from all runs is considered as the validation AUC at that iteration 
(step 5 in Algorithm 5.1). This is done to reduce error in the estimate of mean performance of the model.  

Note that the test data set is kept aside for final evaluation, and only the validation data set is used to 
optimize keyline set expansion. The keyline set expansion algorithm for auto, transit, and bike keyline 
features is similar, and we skip their description for brevity. Also, one may suggest considering all the 

candidate keylines from the training set (say, 𝐊𝐊all
(c) for congestion feature) instead of the optimized feature 

keyline set (𝐊𝐊opt
(c)  obtained using Algorithm 5.1 for congestion). However, using 𝐊𝐊all

(c) for feature definition is 

not only computationally costly but also results in sub-optimal performance on the test set compared to the 
optimal keyline set. 

5.4. Experiments 

5.4.1. Data 

In our study we focus on four binary classification tasks centered around: congestion, auto-heavy, transit-
heavy, and bike-friendly typology prediction for a city. For training each of the above binary classifiers in a 

supervised manner, we need ground truth labels in the form of (𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑖𝑖 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) where binary 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈
{0,1}, and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 specifies the classification task (congestion, auto-heavy, transit-heavy, and bike-friendly). 
We obtain the task specific binary labels (ground truth) for a city following a recent study (Oke, et al., 2019) 
as described below. 

We obtain 282 cities with each city having one of the four possible labels: congestion, auto-heavy, 
transit-heavy, and bike-friendly. We will refer to this dataset as the 'typology' dataset. The typology label 
distribution across these 282 cities is as follows: 27% congestion, 23% auto-heavy, 39% transit-heavy, and 
11% bike-friendly. Using these four labels, we compute the task-specific binary labels for a city in a one-
versus-all fashion, e.g., for the auto-heavy prediction task, all cities with the auto-heavy label are assigned a 
label of 1, and the remaining cities (from the remaining 3 typologies) are assigned a label of 0. 

Once the city typology dataset is finalized as described above, we collect their Wikipedia addresses 
(URLs) using the (Wikipedia API, 2014). Using the city URLs, we automatically crawl the Wikipedia pages 
associated with the URLs and collect data from the main bodies and infoboxes. We use web scraping tools in 
Python (such as Beautiful Soup, Wikipedia API, and Pandas) for data cleaning and processing as described 
below. 

5.4.1.1 Data from Unstructured Main Body 

The qualitative information on each city in the typology dataset are collected from different sections in 
the respective Wikipedia pages (including sections like demography, geography, economy, transportation, 
infrastructure, education). Although we focus on the transportation aspect of cities, we chose to collect data 
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from all sections in a Wikipedia page, and not just the transportation section. This is because, in some cases, 
information regarding mobility scenario in a city is present in multiple sections such as infrastructure, and 
economy. The textual data extracted for each city are pre-processed (such as removing section titles, 
footnotes and references) and stored in a format such that given a city name, we can get a list of sentences 
from the city's Wikipedia page. Each sentence 𝑙𝑙 in this list is converted to a 768-dimensional real-valued 
vector (𝜙𝜙(𝑙𝑙) ∈ 𝑅𝑅768) using a pre-trained SBERT model (using the version stsb-distilbert-base (Reimers & 
Gurevych, 2019) pre-trained for semantic textual similarity). In this manner, for each city 𝑖𝑖, we obtain a list of 
𝑀𝑀𝑖𝑖 vectors (with each vector being 768 dimensional); here 𝑀𝑀𝑖𝑖 denotes the number of sentences extracted 
from the Wikipedia page of the city 𝑖𝑖. Figure 5.5 provides an illustration of this process for New York City. 

 

Figure 5.5. Textual data extraction from New York City Wikipedia page main body with M sentences and 
vector representation of these sentences using pre-trained SBERT model 

5.4.1.2 Data from Structured Infobox 

The quantitative information pertaining to each city's demography are collected from the 
corresponding Wikipedia infobox. We extract population density, population and area estimates (all in 
text format), pre-process the data, and convert them to numeric values. The density and area values in 
Wikipedia articles are available in both mile and kilometer units. For cities with no density information 
in their Wikipedia pages, we compute the missing values using their population and area estimates. 
The derived population densities (in sq.mi) for each city are first normalized and then used as numeric 
features in the typology classification models in our study. Additionally, the city coordinates are also 
obtained from their respective Wikipedia pages for visualization purposes. 
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5.4.1.3 Train and Test Datasets 

For our typology prediction tasks, we use logistic regression (LR) model for each of the typology classifiers. 
Such models are trained (supervised) based on a training dataset so that the model learns the relationship 
between the input and output variables; the performance of the model is then assessed using a test dataset 
(different from training set yet representative of the dataset as a whole). Therefore, in our case we 
considered 70% of the city typology data for training (i.e., 197 cities with 28% congestion, 23% auto-heavy, 
36% transit-heavy, and 13% bike-friendly cities) and 30% for testing purpose (i.e., 85 cities with 23% 
congestion, 23% auto-heavy, 46% transit-heavy, and 8% bike-friendly cities). For both the train and test 
datasets, we generate positive and negative labels (1s and 0s) for each typology classification model (binary 
classifier) based on the respective typology. For example, for auto-heavy model, we label cities with category 
auto as 1 while cities with categories other than auto (e.g., congestion, transit, or bike) are labeled 0. 
Therefore, the train set (197 cities) and the test set (85 cities) used in each classification model remain the 
same. However, the city typology labels (output variables) are modified based on the prediction task of the LR 
models. 

5.4.2. Evaluation Metrics 

For quantitatively measuring the performance of the typology classifiers in our study, we consider the 
metric widely used for evaluating binary classification models i.e., AUC (Area under the curve) ROC (Receiver 
Operating Characteristics) curve (Murphy, 2012). The ROC curve is a probability curve that plots the true 
positive rate against false positive rate at various threshold values. AUC provides the summary of the ROC 
curve and can be used to compare classifiers directly without specific decision thresholds. In simple terms, 
the AUC score (AUC ∈ [0,1]) tells us how well the model is able to distinguish between positive and negative 
classes. For example, consider the congestion classification task: the higher the AUC, the better the model is 
at classifying between whether the city is congested or not. In addition, for the models with features 
obtained from optimal expanded keyline sets, we report the accuracy (fraction of samples where predicted 
label matches ground truth label), precision (true positives over the sum of true positives and false 
positives), recall (true positives over the sum of true positives and false negatives), and F-1 score (harmonic 
mean of precision and    recall). 

5.4.3. Initial Keyline Features 

For each city in our data we obtain a list of 768-dimension vectors (the size of the list varies based on the 
number of lines in each city Wikipedia page). Our proposed method of algorithmically extracting lines from 
a city’s Wikipedia page (Algorithm 5.1) to semantically match the typology of interest provides a 4-
dimensional keyline based feature vector for each city (as mentioned in Eq. (5.6). As outlined in Algorithm 

5.1, the feature keyline sets 𝐊𝐊(c),𝐊𝐊(a), 𝐊𝐊(t), and 𝐊𝐊(b) are initialized using their corresponding anchor texts. 

For clarity, we denote these singleton keyline sets as 𝐊𝐊intial
(c) , 𝐊𝐊intial

(a) , 𝐊𝐊intial
(t) , and 𝐊𝐊intial

(b) . The associated 
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keyline features 𝑓𝑓(𝑐𝑐), 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑡𝑡)  and 𝑓𝑓(𝑏𝑏) are computed using the keyline similarity formulae (Eqs. (5.9)-

(5.12)). We denote these features as 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑐𝑐) , 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑎𝑎) , 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑡𝑡)   and 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑏𝑏) ;  values of these features for 
example cities in the typology data are shown in Table 5.3.  

Table 5.3. Keyline feature values (obtained using the anchor texts) for example cities in the typology data 

City name f (c) initial f (a) 
initial f (t) initial f (b) 

initial 

Dhaka, Bangladesh 0.681 0.500 0.525 0.550 
Dubai, United Arab Emirates 0.475 0.429 0.504 0.441 
Amsterdam, Netherlands 0.533 0.493 0.585 0.776 
Changchun, China 0.510 0.485 0.449 0.427 

 

The typology classification models trained using these (anchor text based) keyline features  serve as base 
models in our study. Note that since we have at most 282 labeled samples for training a classifier, we cannot 
directly use a 768-dimensional representation of the Wikipedia page by simply averaging the vectors across 
lines in the Wikipedia page. 

5.5. Results 

5.5.1. Generated Candidate Keylines 

Our proposed method considers using a set of representative keylines pertaining to a city feature (in 
addition to its anchor text). First, we obtain the candidate keylines related to each feature. Using the train 

data prepared for each typology classifier and the feature anchor texts (𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑐𝑐),𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑎𝑎),𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑡𝑡), 

and 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑏𝑏)) we extract candidate keylines pertaining to congestion, auto, transit, and bike features using 
Eqs. (5.14)-(5.16) respectively.  

The number of candidate keylines obtained for congestion, auto, transit, and bike features are 56, 45, 71, 
and 25 respectively; these numbers correspond to the typology distribution in the train set (e.g., for auto we 
have 45 positive samples with auto-heavy typology in the train set, and one candidate keyline is derived 
from the Wikipedia page corresponding to each of the positive samples). An example candidate auto keyline 
is ‘many of these auto routes are frequently congested at rush hour’; this is obtained from Montreal (Canada) 
Wikipedia page (having maximum similarity with the auto anchor text i.e., ‘most people in the city use cars’). 
The similarity scores of the candidate keylines (i.e., with anchor texts) range between 0.31 to 0.79.  Our 
experiments are carried out on a computer with Intel i7 processor with 2 cores, 4 logical processors and 16 
GB RAM. The computation time noticed for the above-mentioned sets of candidate keylines is 22 minutes 
for congestion, 25 minutes for auto, 28 minutes for transit, and 13 minutes for bike. Therefore, average 
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computation time for finding a keyline (indicative of a typology) on a Wikipedia page using our method is 
around 30 seconds.  

Candidate keylines are able to effectively capture relevant signals indicative of the typologies from the 
Wikipedia pages; some variability is noticed in keylines with lower scores which may be attributed to the 
amount and type of information present in corresponding Wikipedia pages. The effect of such noise in 
candidate keylines on the typology prediction tasks is reduced with the use of optimal keyline sets derived 
from these candidate keylines (using our proposed feature keyline set expansion method). Having this set of 
representative keylines indicative of the typology casts a wider net for retrieving relevant signals from the 
city Wikipedia pages and reduces the dependency on a single keyline. We sort the candidate keylines (in 

descending order by similarity score) and store them as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑎𝑎), 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑡𝑡), and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑏𝑏) for feature keyline set expansion. 

5.5.2. Feature Keyline Set Expansion Results 

The keyline set expansion method for a feature (as outlined in Algorithm 5.1) requires that at each 
expansion iteration (𝑒𝑒), we expand the selected feature keyline set (step 3), compute associated feature 
using the expanded feature keyline set (step 4), then train and measure the classifier’s performance based 
on the updated feature vectors (step 5). The number of iterations in the feature keyline set expansion 
algorithm depends on the number of feature candidate keylines in the train sets (considered in multiple runs 
of the 3-fold cross validation process. In other words, for a particular instantiation of the cross-validation 
step, the number of iterations depends on the number of positive samples in the train set (which is randomly 
sampled for each instance of cross-validation).  Due to such variability, for Algorithm 5.1 we observed 30-33 
iterations for congestion, 23-25 for auto, 38-40 for transit, and 16-18 for bike feature respectively. 

At each 𝑒𝑒(≥ 1), the percentage increment in the model performance metric (i.e., average validation 
AUC) is computed with respect to 𝑒𝑒 = 0  (i.e., where the model trained with only anchor text based features 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑐𝑐) , 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑎𝑎) , 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑡𝑡)   and 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑏𝑏) . Figure 5.6 plots the performance metric increment graph with 
incremental expansion of the feature keyline set. As highlighted on the graphs in the figure, it is observed 
that the congestion typology classifier performs best at 𝑒𝑒 = 2. This means, three congestion related keylines 

added from 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐) (including 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑟𝑟(𝑐𝑐)) in 𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜
(𝑐𝑐) , (as explained in Algorithm 5.1) is found 

optimal for representing the congestion feature 𝑓𝑓(𝑐𝑐). Similarly, for auto, transit, and bike, best performances 
are noticed at 𝑒𝑒 = 14, 34, and 11 respectively. The optimal feature keyline sets for auto, transit, and bike 

are denoted as  𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜
(𝑎𝑎) ,𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜

(𝑡𝑡) , and 𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜
(𝑏𝑏)  respectively; hence|𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜

(𝑐𝑐) |= 3, |𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜
(𝑎𝑎) |= 15, |𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜

(𝑡𝑡) | = 35, and |𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜
(𝑏𝑏) | = 12. 

Similarly, features computed based on respective optimal feature keyline sets are denoted as 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡
(𝑐𝑐), 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜

(𝑎𝑎), 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜
(𝑡𝑡)  

and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜
(𝑏𝑏); as examples Table 5.4 provides values of these features for selected cities (as listed in Table 5.3). 
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(a) (b) 

     

(c) (d) 

Figure 5.6. Optimal keyline set expansion for: (a) congestion, (b) auto, (c) transit, and (d) bike 

 

Table 5.4. Keyline feature values (obtained using the optimal feature keyline sets) for example cities in the 
typology data 

City name f (c) opt f (a) 
opt f (t) opt f (b) 

opt City typology 

Dhaka, Bangladesh 0.781 0.666 0.649 0.658 Congestion 
Dubai, United Arab Emirates 0.552 0.716 0.621 0.615 Auto-heavy 
Amsterdam, Netherlands 0.554 0.601 0.911 0.776 Transit-heavy 
Changchun, China 0.510 0.671 0.609 0.717 Bike-friendly 

Table 5.5 provides some examples of expanded keylines from each optimal feature keyline sets. The 
relevance of most of the expanded feature keylines in indicating the underlying meaning of the typology is 
worthy of note. For example, the transit keyline 'every major street in the city is served by at least one bus 
route' indicates the extensive use of bus transit in the city. In addition, the textual diversity in the expanded 
feature keylines is a positive indication that our model can find relevant keylines given the anchor text 
despite the paraphrasing complexity in hundreds of Wikipedia pages (spanning multiple countries and 
human editors). Moreover, while processing lines from a city’s Wikipedia page for predicting the typology, 
we compute the maximum similarity across a set of keylines; this limits the chances of incorrect inference 
even when a small fraction of keylines is noisy or not relevant. 
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Based on the graphs plotted in Figure 5.6, the model performance improves when a representative set of 
keylines (indicating the typology-based feature) is considered compared to anchor text alone, even though 
the additional keylines are based on the same underlying meaning as the anchor text. This is because various 
keylines that are extracted from city Wikipedia pages are not just semantically similar to the intuitive 
meaning of the typology, they represent city-based factors and elements associated with the typology as 
well (as can be seen in Table 5.5). Examples include inadequate city infrastructure leading to congestion, 
availability of sufficient freeways facilitating auto use, or emergence of app-based bicycle sharing 
services in popularizing cycling in the city. Having a representative set of feature keylines casts a wider 
net for retrieving useful signals from the city Wikipedia pages that indicate or represent the typology of 
interest. Moreover, addition of keylines beyond optimal expansion (highlighted in the graphs in Figure 5.6) 
does not necessarily  improve the performance further; this is due to introduction of irrelevant or 
redundant lines in the keyline set. 

Table 5.5. Examples of keylines (extracted from city Wikipedia pages) in the optimal feature keyline sets 

 Auto keylines Congestion 
keylines 

Bike keylines Transit keylines 

Anchor 
text 

Most people in 
the city  use cars 

The city has heavy 
traffic     congestion 

Many people 
in the city use 
bike or cycle 

Most people in 
the city use 
public transit 
like bus and 
metro 

 
Expanded 
keylines 

The area has a 
number of          
freeways to 
transport 
people by car 

Uncontrolled 
urban sprawl has 
challenged the 
city 
infrastructure, 
producing heavy 
traffic congestion 

It is possible to 
cycle to  most 
parts of the 
city 

Almost half of 
all journeys in 
the 
metropolitan 
area are made 
on public 
transport 

 
Car sharing is 
available to 
residents of the 
city and some 
inner suburbs 

Chronic traffic 
congestion, and a 
sudden and 
prolonged surge 
in crime have 
become perennial 
problems 

Cycling has 
seen a 
resurgence in 
popularity due 
to the 
emergence of 
a large number 
of dock- less 
app-based 
bicycle sharing 
systems 

Every major 
street in the city 
is served by at 
least one bus 
route 

5.5.3. Typology Classification Results 

We discuss the performance of the four typology classifiers developed in our study i.e., congestion, auto-
heavy, transit-heavy and bike-friendly. Since we have multiple types of features (e.g., keyline features from 
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Wikipedia textual components and infobox numeric feature), we examine the model performance for 
various choices of the feature combinations. The input features used in the typology classification models 

constitute the following: features from Wikipedia textual component only (𝑓𝑓(𝑐𝑐), 𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑡𝑡)  and 𝑓𝑓(𝑏𝑏)); 
features from Wikipedia numeric component only (𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), and both textual and numeric components. In 
addition to these sets of input features, we use different combinations of feature keyline sets to define the 
model features. The keyline sets for congestion, auto, transit, and bike include: singleton sets with anchor 

texts only (𝐊𝐊intial
(c) , 𝐊𝐊intial

(a) , 𝐊𝐊intial
(t) , and 𝐊𝐊intial

(b) ); optimal sets where keylines are optimally expanded using 

keyline set expansion method as 𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜
(𝑐𝑐) ,𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜

(𝑎𝑎) ,𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜
(𝑡𝑡) , and 𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜

(𝑏𝑏) ; and full sets where keylines are expanded to 

the fullest i.e., using all candidate keylines (we denote them as 𝑲𝑲𝑎𝑎𝑎𝑎𝑎𝑎
(𝑐𝑐),𝑲𝑲𝑎𝑎𝑎𝑎𝑎𝑎

(𝑎𝑎),𝑲𝑲𝑎𝑎𝑎𝑎𝑎𝑎
(𝑡𝑡) , and 𝑲𝑲𝑎𝑎𝑎𝑎𝑎𝑎

(𝑏𝑏)). The notations 
used for features are based on the notations of feature keyline sets. For example, the congestion feature 

𝑓𝑓(𝑐𝑐),  computed using 𝐊𝐊intial
(c) , 𝑲𝑲𝑜𝑜𝑜𝑜𝑜𝑜

(𝑐𝑐) , and 𝑲𝑲𝑎𝑎𝑎𝑎𝑎𝑎
(𝑐𝑐),  is denoted as 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑐𝑐) , 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜
(𝑐𝑐),, and 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎

(𝑐𝑐) respectively. Similar 

notations are used to denote auto, transit, and bike features.  

Using multiple combinations of the above-mentioned features, we train classifiers (LR models) using the 
train set (197 cities) and we study the test set metrics (using 85 cities in the test set) for the choice of feature 
combinations. Based on the results of the typology classifiers on the test set, it is observed that compared to 
using only anchor text-based features, the models for congestion, auto-heavy, and bike-friendly typology 
prediction show significant improvement (56-80% lift in AUC scores) when features from both numeric and 
textual components are used, where the textual features are computed based on their optimal feature 
keylines. Congestion, auto-heavy, and bike-friendly classifiers have the highest test set AUC scores (0.85, 

0.86, and 0.94 respectively) with features 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜
(𝑐𝑐),𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜

(𝑎𝑎),𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜
(𝑡𝑡), 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜

(𝑏𝑏) and 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑; for transit-heavy classifier, the 

highest test set AUC (0.61) is observed with features 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜
(𝑡𝑡),𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑎𝑎) ,𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑐𝑐) ,and 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑏𝑏) . The transit-heavy 

prediction model can be improved further with inclusion of additional city related features. This applies to 
other typology classification models as well, where further enhancing the model performance with extra 
features (from Wikipedia and/or other data sources) can be a promising future research direction. 

For the models with the highest test set AUC scores, we get the input feature coefficients (including 
intercepts) and calculate additional performance metrics (i.e., classification scores); values are  reported in 
Table 5.6. Features with positive coefficient influence the probability of the event (typology prediction in our 
case) in a positive way and vice-versa. It is worth highlighting that in each typology classification model, 
features corresponding to the typology prediction have positive co efficients. For example, the auto-heavy 
classifier has a positive coefficient for f (a); this implies if there is indicative information in Wikipedia 
regarding high usage of automobiles in a city, there is a high chance that the city is predicted as an auto-
heavy type city. Moreover, the population density feature in the congestion classification model has a 
positive coefficient, this justifies the relation between population growth and traffic congestion in cities.  
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Table 5.6. Feature coefficients and classification scores of the best performing city typology prediction 
models 

Model (task) Intercept f (c) f (a) f (t) f (b) f (density) Accuracy Precision Recall F1-Score 

Congestion prediction -0.687 0.116 -0.185 -0.274 -0.066 0.537 0.80 0.84 0.80 0.81 
Auto-heavy prediction -1.208 -0.001 0.047 -0.024 -0.013 -0.033 0.85 0.86 0.85 0.85 
Transit-heavy prediction -5.355 -0.021 -0.006 8.553 -2.836 0.000 0.62 0.62 0.62 0.62 
Bike-friendly prediction -1.913 -0.104 -0.019 -0.146 0.278 -0.190 0.76 0.92 0.76 0.81 

 

It is interesting to note the reasonably high classification scores for congestion, auto-heavy, and 
bike-friendly typology prediction models reflecting their generalization capabilities; this is important 
when the models are be used on new and unseen data. However, we must also note that the performance 
of the model for transit-heavy typology prediction can be further enhanced with supplementary features 
supporting the typology, and additional data for training the model. Nonetheless, the classification results 
are rather encouraging indicating the effectiveness of Wikipedia as a data source for predicting city 
typologies. 

5.5.4. Insights and Applications 

The models developed for city typology predictions in our study can be applied to any city in the world 
whose details are available on Wikipedia. For the purpose of building the typology classification models, we 
use the Wikipedia data for 282 cities (including train and test set). Figure 5.7 shows the locations of these 
cities on the world map. To extend the analysis to other cities across  the globe, we collect the list of cities 
(and urban towns) with 100,000 or more inhabitants from (Wikipedia, 2021) (many other cities are available 
on Wikipedia based on different criteria). We select around 2102  cities by web crawling the Wikipedia list of 
cities pages and fetch the city Wikipedia URLs. Using  these URLs, for each city, we obtain the necessary data. 
Based on the input variables used in the best performing typology classification models, we compute the 
feature vector for  these cities. To provide a sense of how a city typology study on limited samples can be 
propagated  to a larger scale using our proposed method, Figure 5.8 shows the application of one of the 
typology classification models from our study. The figure includes ~ 2100 city locations (exclusive of    the city 
data by Oke et al. (2019)) and the choropleth map of congestion probability scores obtained using the 
congestion classification model. 
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Figure 5.7. Cities selected from (Oke, et al., 2019) for developing the typology classification models in our 
study 

 

Figure 5.8. 2,102 cities from Wikipedia and their congestion probability scores, the sequential color palette 
represent low to high range of probability values 
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Wikipedia contains unprecedented volume and variety of information on different cities across the globe. 
Wikipedia         not only contains detailed information on various aspects of cities, it also offers information on 
the intangible aspects such as people’s preferences and opinions; the way people express these details vary 
based on locations, regions, and countries. To capture such variety of information pertaining to              a specific 
typology, we present an iterative keyline expansion method that selects a representative set of keylines 
from city Wikipedia pages that allude to the city typology. The optimal feature keyline sets obtained using 
our proposed algorithm can be used to identify similar lines indicative of respective typologies for any city in 
the world that has a Wikipedia page with relevant transportation information in it. 

Our methodology permits integration of information from textual and numeric components (on 
Wikipedia) in the typology prediction models and provides sufficient flexibility for expansion of the model 
feature vector allowing incorporation of additional variables. As our approach is based on understanding the 
intuitive meaning of the typology to consequently extract semantically similar and relevant textual 
information for defining city characteristics, it can be easily extended to different typology prediction tasks. 
As long as there is sufficient information pertaining to such typologies available in city Wikipedia pages, this 
holds true for both transportation-based typologies (e.g., pedestrian-friendly or walkable cities, paratransit 
accommodating cities) and non-transportation-based ones as well (e.g., climate-friendly cities).
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6. Conclusion 

Three dimensions of multi-modal transportation were explored in connection with ride sharing 
technologies. These were characteristics of connectivity, the role of human behavior, and new markets 
associated with food chains.  

Connectivity. Multi-modal usage can be promising for the introduction of new modes of travel, such 
as ride sharing (National Academies of Sciences, Engineering, and Medicine 2021) that VIA provides. 
Proximity of the user to origins and destinations are important characteristics for connecting to other 
modes. Ride sharing modes can adopt other technologies such as electric vehicles and autonomous 
vehicles in a multimodal connectivity framework though conditions and constraints associated with 
those technologies exist. 

Human Behavior. The attitudes and perceptions of users of multiple modes and their connections 
shape their behavior in the form of acceptance of such modes. The dimensions of behavior incorporate 
many factors ranging from views about safety and security, environmental compatibility, cost, comfort, 
and convenience (Zimmerman, 2019a). These can dramatically influence the viability of physical or 
technological characteristics of multiple modes. 

New Markets. In normal times as well as in extreme events such as the pandemic and severe 
weather, pathways that define how food services connect food sources and consumers are strongly 
dependent on transportation systems (Zimmerman, 2021a, b). Ride sharing technologies can economize 
on those sections of the distribution system that bring raw materials to producers and finished products 
to consumers either by bringing consumers to the food sources or food to the consumers. 

We propose a methodology to upscale data from the limited data available to microtransit 
operators (and to public agencies like the Federal Transit Administration in overseeing deployment 
regulations at the federal level). The method uses simulation to fit market equilibrium models to the 
limited data so that those models can be used to generate scenario data at low cost. The overall 
methodology contributes to the literature by parameterizing the within-day simulator from Yoon et al. 
(2021), extending the day-to-day market equilibrium model from Djavadian and Chow (2017a,b) to 
consider travelers with first/last mile access trips as well as direct trips, and providing a scenario 
generation algorithm for feeding the market equilibrium simulation model. 

The new surrogate data proves to be useful; models fit to the data are adequately accurate 
compared to the original limited data set (CVs ~ 45% for 4 observations) while illuminating statistically 
meaningful relationships between various public data with deployment portfolio measures like ridership 
and VMT.  
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Identifying the right cities to enter their markets requires having some understanding of the typology 
of these cities. City typologies based on the dynamics of mobility in cities can allow easy identification of 
comparable cities that can assist the decision-making process for emerging technologies like 
microtransit service deployment and planning. We propose a novel method for the utilization of 
Wikipedia articles on cities for a large-scale global city typology prediction (focusing on the 
transportation aspect of cities). Using data extracted from Wikipedia, we develop four typology 
classification models to predict conges tion, auto-heavy, transit-heavy, and bike-friendly type cities (based 
on ground truth labels by Oke et al. (2019). We do so by algorithmically extracting lines from a city’s 
Wikipedia page which semantically match a typology (via the SBERT NLP model) and use the typology-
wise match scores to derive     a low-dimensional keyline based feature vector (4-dimensional) 
representing the city. Using our proposed method, we demonstrate how a city typology classification 
based on limited samples (~300 cities) can be proliferated to an enormous scope spanning over 2000 
cities across the world. 

Our methodology permits integration of information from textual and numeric components                     (on 
Wikipedia) in the typology prediction models and provides sufficient flexibility for expansion of the 
model feature vector allowing incorporation of additional variables. Our study finds Wikipedia articles to 
be informative about transportation-based typology indicators. To the best of  our knowledge, this is the 
first time the text-based information from Wikipedia articles is used as a data source for cities in this 
manner. This opens new opportunities for utilizing text-based data for transportation studies. 

Our novel approach of using text-based information from Wikipedia for understanding city typologies, 
and the outcomes presented in our study can assist a diverse group of stakeholders                                      in transportation 
and urban planning fields. Additionally, we believe our method will reinforce existing studies utilizing 
crowd-sourced data leading to advances in strategic urban and transportation planning particularly in 
data-scarce regions of developing countries.  

Future research should look at further collaboration with microtransit providers to understand the 
performance effects of city typologies and to focus more on empirically capturing good fitting forecast 
models using the proposed methodologies. Other emerging technologies should also be considered, 
especially where data are limited: e.g., planning electric vehicle fleets and charging infrastructure, pilots 
for autonomous vehicle fleets. A portfolio dashboard can be implemented to help a microtransit 
provider evaluate their portfolios and analyze alternative portfolio designs. 
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7. Summary of Research Outputs and Tech Transfer 

As an outcome of this research project, several research outputs were produced along with 
dissemination. This section summarizes those results. 

Table 7.1. Summary of research outputs 

Output type Description Link/source 

Paper Rath, S., Liu, B., Yoon, G., Chow, J.Y.J., 
Microtransit deployment portfolio 
management using simulation-based data 
upscaling, submitted to 101st TRB Annual 
Meeting for presentation only. 

Not available yet 

Paper Rath, S., Chow, J.Y.J., Worldwide city 
transport typology prediction with 
sentence-BERT based supervised learning 
via Wikipedia, submitted to 101st TRB 
Annual Meeting for presentation only. 

Not available yet 

Paper R. Zimmerman, “Network-based Drivers 
of Technical and Social Innovations in 
Integrated Food, Water and Energy (FEW) 
Systems.” Proceedings of the 
International Conference on Sustainable 
Development (ICSD) September 21-22, 
2020, New York, NY: Columbia University 
Earth Institute and other 
collaborators.Posted November 2020.   

https://ic-sd.org/wp-
content/uploads/2020/11/Rae-
Zimmerman.pdf 

Paper He, B. Y., Chow, J. Y. J., 2021. Entropy 
maximizing gravity model of passenger 
and mobility fleet origin-destination 
patterns with partially observed service 
data. Transportation Research Record, 
2675(6), 235-253. 

https://doi.org/10.1177/0361198121992
074 

Data Calibrated simulation-based models for 6 
cities 

https://zenodo.org/record/5517983#.YUo
zC7hKg2w 

Data Estimated portfolio model and 
performance measures for two 
alternative portfolios 

https://zenodo.org/record/5517983#.YUo
zC7hKg2w 

Presentation 2021 C2SMART panel/webinar https://www.youtube.com/watch?v=rA7T

https://ic-sd.org/wp-content/uploads/2020/11/Rae-Zimmerman.pdf
https://ic-sd.org/wp-content/uploads/2020/11/Rae-Zimmerman.pdf
https://ic-sd.org/wp-content/uploads/2020/11/Rae-Zimmerman.pdf
https://doi.org/10.1177%2F0361198121992074
https://doi.org/10.1177%2F0361198121992074
https://zenodo.org/record/5517983#.YUozC7hKg2w
https://zenodo.org/record/5517983#.YUozC7hKg2w
https://zenodo.org/record/5517983#.YUozC7hKg2w
https://zenodo.org/record/5517983#.YUozC7hKg2w
https://www.youtube.com/watch?v=rA7TLsiXQ98
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LsiXQ98  

Presentation 2021 INFORMS Annual Meeting 
presentation 

https://www.abstractsonline.com/pp8/?_
_hstc=194041586.9ad974a5999e3a9e202
e99f21eba80a4.1598648681888.1630698
234610.1630762393840.57&__hssc=1940
41586.1.1630762393840&__hsfp=275969
8710&hsCtaTracking=76a3f7ff-51d5-
4ec3-9afc-6681cc8dc243%7C1799fe6c-
2007-47fc-9053-
bd9abe03f130#!/10390/presentation/621
3  

Presentation 2022 TRANSED Microtransit Conference Abstract submitted 

Presentation 101st TRB Annual Meeting: Microtransit 
deployment portfolio management using 
simulation-based data upscaling 

Paper submitted 

Presentation 101st TRB Annual Meeting: Worldwide city 
transport typology prediction with 
sentence-BERT based supervised learning 
via Wikipedia 

Paper submitted 

Presentation 2021 ASCE Metropolitan Section 
Infrastructure Group June seminar: 
Flexible & Adaptable Infrastructure for a 
Post-Covid World 

https://register.gotowebinar.com/registe
r/3426197394343709198 

Presentation ASCE International Conference on 
Sustainable Infrastructure: Small Changes, 
Large Effects: Interconnected 
Infrastructure Networks in Food Supply 
Chain Disruptions and Multi-Modal 
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Appendix A  

The estimated feature coefficient values of the ridership and VMT forecast models are listed in Table A.1 
and Table A.2 respectively. 

Table A.1. Ridership forecast model estimated feature coefficient values 

Feature Estimated 
coefficient  

Feature Estimated 
coefficient 

Feature Estimated 
coefficient 

Intercept 2.21E-01 mean income (dollars) 
x fix fare 

3.07E-06 HH density x PP1 1.19E-01 

mean income (dollars) -2.90E-06 auto ownership per HH 
x street density 

-1.69E-01 HH density x PP2 1.70E-01 

auto ownership per HH 3.75E+00 auto ownership per HH 
x HH density 

-4.05E-04 HH density x fix fare -1.39E-01 

street density 5.82E-02 auto ownership per HH 
x transit stop density 

-2.04E-02  transit stop density x 
mean TRIPEQ 

1.27E+02 

HH density 8.83E-02 auto ownership per HH 
x employment density 

4.17E-02  transit stop density x 
PP1 

-2.76E+00 

transit stop density 3.30E+01 auto ownership per HH 
x mean TRIPEQ 

2.86E-01  transit stop density x 
PP2 

9.87E+01 

employment density 1.00E-01 auto ownership per HH 
x PP1 

3.63E-01  transit stop density x 
fix fare 

-2.04E+01 

mean TRIPEQ 2.29E+00 auto ownership per HH 
x fix fare 

-3.87E-01 employment density x 
mean TRIPEQ 

6.09E-01 

PP1 -1.14E+00 street density x HH 
density 

-1.63E-02 employment density x 
PP1 

-4.66E-02 

PP2 2.34E-15 street density x transit 
stop density 

-1.56E-01 employment density x 
PP2 

4.41E-01 

fix fare -6.25E-02 street density x mean 
TRIPEQ 

8.86E-02 employment density x 
fix fare 

-7.92E-02 

mean income (dollars) 
x street density 

1.37E-07 street density x PP1  5.78E-02 mean TRIPEQ x PP1 -4.08E-01 

mean income (dollars) 
x transit stop density 

1.80E-04 street density x PP2 2.22E-03 mean TRIPEQ x PP2 1.05E-01 

mean income (dollars) 
x employment density 

3.88E-07 street density x fix fare -2.70E-02 mean TRIPEQ x fix fare -4.12E-02 

mean income (dollars) 
x PP1  

-1.50E-05 HH density x 
employment density 

4.39E-03 PP1 x fix fare -2.67E-02 

mean income (dollars) 
x PP2 

7.53E-07 HH density x mean 
TRIPEQ 

6.54E-01     
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Table A.2. VMT forecast model estimated feature coefficient values 

Feature Estimated 
coefficient  

Feature Estimated 
coefficient 

Feature Estimated 
coefficient 

Intercept -3.26E+00 mean income (dollars) x 
fix fare 

1.78E-06 HH density x mean 
TRIPEQ 

-1.10E+01 

mean income (dollars) 2.86E-05 auto ownership per HH 
x street density 

-7.74E-01 HH density x PP1 4.03E+00 

auto ownership per HH -1.62E+00 auto ownership per HH 
x HH density 

-9.01E-01 HH density x PP2 9.38E-01 

street density 2.71E-01 auto ownership per HH 
x transit stop density 

-3.04E+02 HH density x fix fare -5.65E-01 

HH density 8.03E-01 auto ownership per HH 
x employment density 

9.06E-01  transit stop density x 
employment density 

-5.71E+01 

transit stop density -1.36E+01 auto ownership per HH 
x mean TRIPEQ 

5.56E+01  transit stop density x 
mean TRIPEQ 

1.29E+01 

employment density -6.39E-01 auto ownership per HH 
x PP1 

4.48E+00  transit stop density x 
PP1 

3.97E+02 

mean TRIPEQ -3.25E+01 auto ownership per HH 
x PP2 

-5.53E-01  transit stop density x 
PP2 

4.44E+02 

PP1 -4.43E-01 auto ownership per HH 
x fix fare 

-4.92E+00  transit stop density x 
fix fare 

-6.47E+01 

PP2 2.57E-15 street density x HH 
density 

-7.76E-02 employment density x 
mean TRIPEQ 

1.51E+00 

fix fare 3.42E+00 street density x transit 
stop density 

-5.68E+00 employment density x 
PP1 

-7.87E-01 

mean income (dollars) x 
auto ownership per HH 

-2.15E-05 street density x 
employment density 

8.80E-03 employment density x 
PP2 

1.82E+00 

mean income (dollars) x 
street density 

5.17E-07 street density x mean 
TRIPEQ 

1.67E+00 employment density x 
fix fare 

2.50E-01 

mean income (dollars) x 
HH density 

9.61E-06 street density x PP1  2.23E-01 mean TRIPEQ x PP1 -6.83E+00 

mean income (dollars) x 
transit stop density 

7.90E-04 street density x PP2 4.61E-01 mean TRIPEQ x PP2 -2.44E+00 

mean income (dollars) x 
employment density 

-6.38E-06 street density x fix fare -5.27E-02 mean TRIPEQ x fix fare -5.29E-01 

mean income (dollars) x 
mean TRIPEQ 

-1.08E-04 HH density x  transit 
stop density 

1.16E+02 PP1 x fix fare 8.88E-01 

mean income (dollars) x 
PP1  

1.11E-05 HH density x 
employment density 

1.94E-01 PP2 x fix fare 1.41E+00 

mean income (dollars) x 
PP2 

1.72E-05         

 


	Executive Summary
	Table of Contents
	Executive Summary iv
	Table of Contents vi
	List of Figures vii
	List of Tables ix
	1. Introduction 10
	2. Overview of Multimodal Connectivity and Microtransit Forecasting 14
	3. Proposed Methodology 18
	4. Portfolio Model for U.S. Microtransit Deployment 27
	5. City Typology Prediction using Wikipedia 41
	6. Conclusion 1
	7. Summary of Research Outputs and Tech Transfer 3
	References 4
	Appendix A 14
	List of Figures
	List of Tables
	1. Introduction
	1.1 Project Background
	1.2 Role of Multimodal Connectivity in Improving the Performance of Ridesharing
	1.3 Report Organization

	2. Overview of Multimodal Connectivity and Microtransit Forecasting
	2.1. Multimodal Connectivity Incorporating Ride Sharing
	2.2. Human Behavior
	2.3. Expanded Markets for Ridesharing
	2.4. Forecast Models for Microtransit
	2.5. Simulation-based Market Equilibrium Forecasting

	3. Proposed Methodology
	3.1. General Model Design
	3.2. Estimation of Mode Choice Model
	3.3. Within-day Simulator
	3.4. Scenario Generator

	4. Portfolio Model for U.S. Microtransit Deployment
	4.1. Data
	4.2. Calibration of the Market Equilibrium Model
	4.3. Microtransit Deployment Forecast Portfolio Model
	4.3.1 Forecast Model Estimation and Validation
	4.3.2 Application of Forecast Models for Deployment Planning

	4.4. Discussion

	5. City Typology Prediction using Wikipedia
	5.1. Literature Review
	5.1.1. Usage of Crowd-sourced Data in Transportation and Urban Planning
	5.1.2. Text Understanding

	5.2. Problem Formulation
	5.2.1. Setup
	5.2.2. Objective

	5.3. Methodology
	5.3.1. High-level Overview
	5.3.2. Supervised Learning using Logistic Regression
	5.3.3. Keyline-based Feature Engineering
	5.3.3.1. Semantic Textual Similarity
	5.3.3.2. Keyline Similarity Features
	5.3.3.3. Keyline Sets (Initial Guess and Set Expansion)

	5.4. Experiments
	5.4.1. Data
	5.4.1.1 Data from Unstructured Main Body
	5.4.1.2 Data from Structured Infobox
	5.4.1.3 Train and Test Datasets
	5.4.2. Evaluation Metrics
	5.4.3. Initial Keyline Features

	5.5. Results
	5.5.1. Generated Candidate Keylines
	5.5.2. Feature Keyline Set Expansion Results
	5.5.3. Typology Classification Results
	5.5.4. Insights and Applications


	6. Conclusion
	7. Summary of Research Outputs and Tech Transfer
	References
	Appendix A

